MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem1 Unicode version

Theorem minvecolem1 21453
Description: Lemma for minveco 21463. The set of all distances from points of  Y to  A are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
Assertion
Ref Expression
minvecolem1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Distinct variable groups:    y, w, J    w, M, y    w, N, y    ph, w, y   
w, R    w, A, y    w, D, y    w, U, y    w, W, y   
w, X    w, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem1
StepHypRef Expression
1 minveco.r . . 3  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
2 minveco.u . . . . . . . 8  |-  ( ph  ->  U  e.  CPreHil OLD )
3 phnv 21392 . . . . . . . 8  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
42, 3syl 15 . . . . . . 7  |-  ( ph  ->  U  e.  NrmCVec )
54adantr 451 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  NrmCVec )
6 minveco.a . . . . . . . 8  |-  ( ph  ->  A  e.  X )
76adantr 451 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
8 minveco.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
9 elin 3358 . . . . . . . . . . 11  |-  ( W  e.  ( ( SubSp `  U )  i^i  CBan ) 
<->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
108, 9sylib 188 . . . . . . . . . 10  |-  ( ph  ->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
1110simpld 445 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
12 minveco.x . . . . . . . . . 10  |-  X  =  ( BaseSet `  U )
13 minveco.y . . . . . . . . . 10  |-  Y  =  ( BaseSet `  W )
14 eqid 2283 . . . . . . . . . 10  |-  ( SubSp `  U )  =  (
SubSp `  U )
1512, 13, 14sspba 21303 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
164, 11, 15syl2anc 642 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
1716sselda 3180 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
18 minveco.m . . . . . . . 8  |-  M  =  ( -v `  U
)
1912, 18nvmcl 21205 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  y  e.  X )  ->  ( A M y )  e.  X )
205, 7, 17, 19syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A M y )  e.  X )
21 minveco.n . . . . . . 7  |-  N  =  ( normCV `  U )
2212, 21nvcl 21225 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  ( N `  ( A M y ) )  e.  RR )
235, 20, 22syl2anc 642 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A M y ) )  e.  RR )
24 eqid 2283 . . . . 5  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
2523, 24fmptd 5684 . . . 4  |-  ( ph  ->  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) : Y --> RR )
26 frn 5395 . . . 4  |-  ( ( y  e.  Y  |->  ( N `  ( A M y ) ) ) : Y --> RR  ->  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  C_  RR )
2725, 26syl 15 . . 3  |-  ( ph  ->  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  C_  RR )
281, 27syl5eqss 3222 . 2  |-  ( ph  ->  R  C_  RR )
2910simprd 449 . . . . . 6  |-  ( ph  ->  W  e.  CBan )
30 bnnv 21445 . . . . . 6  |-  ( W  e.  CBan  ->  W  e.  NrmCVec )
31 eqid 2283 . . . . . . 7  |-  ( 0vec `  W )  =  (
0vec `  W )
3213, 31nvzcl 21192 . . . . . 6  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  Y )
3329, 30, 323syl 18 . . . . 5  |-  ( ph  ->  ( 0vec `  W
)  e.  Y )
34 fvex 5539 . . . . . 6  |-  ( N `
 ( A M y ) )  e. 
_V
3534, 24dmmpti 5373 . . . . 5  |-  dom  (
y  e.  Y  |->  ( N `  ( A M y ) ) )  =  Y
3633, 35syl6eleqr 2374 . . . 4  |-  ( ph  ->  ( 0vec `  W
)  e.  dom  (
y  e.  Y  |->  ( N `  ( A M y ) ) ) )
37 ne0i 3461 . . . 4  |-  ( (
0vec `  W )  e.  dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  ->  dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/) )
3836, 37syl 15 . . 3  |-  ( ph  ->  dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/) )
39 dm0rn0 4895 . . . . 5  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/)  <->  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  (/) )
401eqeq1i 2290 . . . . 5  |-  ( R  =  (/)  <->  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/) )
4139, 40bitr4i 243 . . . 4  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/)  <->  R  =  (/) )
4241necon3bii 2478 . . 3  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/)  <->  R  =/=  (/) )
4338, 42sylib 188 . 2  |-  ( ph  ->  R  =/=  (/) )
4412, 21nvge0 21240 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  0  <_  ( N `  ( A M y ) ) )
455, 20, 44syl2anc 642 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  0  <_  ( N `  ( A M y ) ) )
4645ralrimiva 2626 . . . 4  |-  ( ph  ->  A. y  e.  Y 
0  <_  ( N `  ( A M y ) ) )
4734rgenw 2610 . . . . 5  |-  A. y  e.  Y  ( N `  ( A M y ) )  e.  _V
48 breq2 4027 . . . . . 6  |-  ( w  =  ( N `  ( A M y ) )  ->  ( 0  <_  w  <->  0  <_  ( N `  ( A M y ) ) ) )
4924, 48ralrnmpt 5669 . . . . 5  |-  ( A. y  e.  Y  ( N `  ( A M y ) )  e.  _V  ->  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A M y ) ) ) )
5047, 49ax-mp 8 . . . 4  |-  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A M y ) ) )
5146, 50sylibr 203 . . 3  |-  ( ph  ->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w
)
521raleqi 2740 . . 3  |-  ( A. w  e.  R  0  <_  w  <->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w
)
5351, 52sylibr 203 . 2  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
5428, 43, 533jca 1132 1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   ran crn 4690   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737    <_ cle 8868   MetOpencmopn 16372   NrmCVeccnv 21140   BaseSetcba 21142   0veccn0v 21144   -vcnsb 21145   normCVcnmcv 21146   IndMetcims 21147   SubSpcss 21297   CPreHil OLDccphlo 21390   CBanccbn 21441
This theorem is referenced by:  minvecolem2  21454  minvecolem3  21455  minvecolem4c  21458  minvecolem4  21459  minvecolem5  21460  minvecolem6  21461
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ssp 21298  df-ph 21391  df-cbn 21442
  Copyright terms: Public domain W3C validator