MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem1 Unicode version

Theorem minvecolem1 21469
Description: Lemma for minveco 21479. The set of all distances from points of  Y to  A are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
Assertion
Ref Expression
minvecolem1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Distinct variable groups:    y, w, J    w, M, y    w, N, y    ph, w, y   
w, R    w, A, y    w, D, y    w, U, y    w, W, y   
w, X    w, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem1
StepHypRef Expression
1 minveco.r . . 3  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
2 minveco.u . . . . . . . 8  |-  ( ph  ->  U  e.  CPreHil OLD )
3 phnv 21408 . . . . . . . 8  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
42, 3syl 15 . . . . . . 7  |-  ( ph  ->  U  e.  NrmCVec )
54adantr 451 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  NrmCVec )
6 minveco.a . . . . . . . 8  |-  ( ph  ->  A  e.  X )
76adantr 451 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
8 minveco.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
9 elin 3371 . . . . . . . . . . 11  |-  ( W  e.  ( ( SubSp `  U )  i^i  CBan ) 
<->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
108, 9sylib 188 . . . . . . . . . 10  |-  ( ph  ->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
1110simpld 445 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
12 minveco.x . . . . . . . . . 10  |-  X  =  ( BaseSet `  U )
13 minveco.y . . . . . . . . . 10  |-  Y  =  ( BaseSet `  W )
14 eqid 2296 . . . . . . . . . 10  |-  ( SubSp `  U )  =  (
SubSp `  U )
1512, 13, 14sspba 21319 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
164, 11, 15syl2anc 642 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
1716sselda 3193 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
18 minveco.m . . . . . . . 8  |-  M  =  ( -v `  U
)
1912, 18nvmcl 21221 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  y  e.  X )  ->  ( A M y )  e.  X )
205, 7, 17, 19syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A M y )  e.  X )
21 minveco.n . . . . . . 7  |-  N  =  ( normCV `  U )
2212, 21nvcl 21241 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  ( N `  ( A M y ) )  e.  RR )
235, 20, 22syl2anc 642 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A M y ) )  e.  RR )
24 eqid 2296 . . . . 5  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
2523, 24fmptd 5700 . . . 4  |-  ( ph  ->  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) : Y --> RR )
26 frn 5411 . . . 4  |-  ( ( y  e.  Y  |->  ( N `  ( A M y ) ) ) : Y --> RR  ->  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  C_  RR )
2725, 26syl 15 . . 3  |-  ( ph  ->  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  C_  RR )
281, 27syl5eqss 3235 . 2  |-  ( ph  ->  R  C_  RR )
2910simprd 449 . . . . . 6  |-  ( ph  ->  W  e.  CBan )
30 bnnv 21461 . . . . . 6  |-  ( W  e.  CBan  ->  W  e.  NrmCVec )
31 eqid 2296 . . . . . . 7  |-  ( 0vec `  W )  =  (
0vec `  W )
3213, 31nvzcl 21208 . . . . . 6  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  Y )
3329, 30, 323syl 18 . . . . 5  |-  ( ph  ->  ( 0vec `  W
)  e.  Y )
34 fvex 5555 . . . . . 6  |-  ( N `
 ( A M y ) )  e. 
_V
3534, 24dmmpti 5389 . . . . 5  |-  dom  (
y  e.  Y  |->  ( N `  ( A M y ) ) )  =  Y
3633, 35syl6eleqr 2387 . . . 4  |-  ( ph  ->  ( 0vec `  W
)  e.  dom  (
y  e.  Y  |->  ( N `  ( A M y ) ) ) )
37 ne0i 3474 . . . 4  |-  ( (
0vec `  W )  e.  dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  ->  dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/) )
3836, 37syl 15 . . 3  |-  ( ph  ->  dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/) )
39 dm0rn0 4911 . . . . 5  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/)  <->  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  (/) )
401eqeq1i 2303 . . . . 5  |-  ( R  =  (/)  <->  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/) )
4139, 40bitr4i 243 . . . 4  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/)  <->  R  =  (/) )
4241necon3bii 2491 . . 3  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/)  <->  R  =/=  (/) )
4338, 42sylib 188 . 2  |-  ( ph  ->  R  =/=  (/) )
4412, 21nvge0 21256 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  0  <_  ( N `  ( A M y ) ) )
455, 20, 44syl2anc 642 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  0  <_  ( N `  ( A M y ) ) )
4645ralrimiva 2639 . . . 4  |-  ( ph  ->  A. y  e.  Y 
0  <_  ( N `  ( A M y ) ) )
4734rgenw 2623 . . . . 5  |-  A. y  e.  Y  ( N `  ( A M y ) )  e.  _V
48 breq2 4043 . . . . . 6  |-  ( w  =  ( N `  ( A M y ) )  ->  ( 0  <_  w  <->  0  <_  ( N `  ( A M y ) ) ) )
4924, 48ralrnmpt 5685 . . . . 5  |-  ( A. y  e.  Y  ( N `  ( A M y ) )  e.  _V  ->  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A M y ) ) ) )
5047, 49ax-mp 8 . . . 4  |-  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A M y ) ) )
5146, 50sylibr 203 . . 3  |-  ( ph  ->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w
)
521raleqi 2753 . . 3  |-  ( A. w  e.  R  0  <_  w  <->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w
)
5351, 52sylibr 203 . 2  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
5428, 43, 533jca 1132 1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   ran crn 4706   -->wf 5267   ` cfv 5271  (class class class)co 5874   RRcr 8752   0cc0 8753    <_ cle 8884   MetOpencmopn 16388   NrmCVeccnv 21156   BaseSetcba 21158   0veccn0v 21160   -vcnsb 21161   normCVcnmcv 21162   IndMetcims 21163   SubSpcss 21313   CPreHil OLDccphlo 21406   CBanccbn 21457
This theorem is referenced by:  minvecolem2  21470  minvecolem3  21471  minvecolem4c  21474  minvecolem4  21475  minvecolem5  21476  minvecolem6  21477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172  df-ssp 21314  df-ph 21407  df-cbn 21458
  Copyright terms: Public domain W3C validator