MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem1 Unicode version

Theorem minvecolem1 21445
Description: Lemma for minveco 21455. The set of all distances from points of  Y to  A are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) )
Assertion
Ref Expression
minvecolem1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Distinct variable groups:    y, w, J    w, M, y    w, N, y    ph, w, y   
w, R    w, A, y    w, D, y    w, U, y    w, W, y   
w, X    w, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem1
StepHypRef Expression
1 minveco.r . . 3  |-  R  =  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) )
2 minveco.u . . . . . . . 8  |-  ( ph  ->  U  e.  CPreHil OLD )
3 phnv 21384 . . . . . . . 8  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
42, 3syl 17 . . . . . . 7  |-  ( ph  ->  U  e.  NrmCVec )
54adantr 453 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  NrmCVec )
6 minveco.a . . . . . . . 8  |-  ( ph  ->  A  e.  X )
76adantr 453 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
8 minveco.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
9 elin 3359 . . . . . . . . . . 11  |-  ( W  e.  ( ( SubSp `  U )  i^i  CBan ) 
<->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
108, 9sylib 190 . . . . . . . . . 10  |-  ( ph  ->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
1110simpld 447 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
12 minveco.x . . . . . . . . . 10  |-  X  =  ( BaseSet `  U )
13 minveco.y . . . . . . . . . 10  |-  Y  =  ( BaseSet `  W )
14 eqid 2284 . . . . . . . . . 10  |-  ( SubSp `  U )  =  (
SubSp `  U )
1512, 13, 14sspba 21295 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
164, 11, 15syl2anc 645 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
1716sselda 3181 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
18 minveco.m . . . . . . . 8  |-  M  =  ( -v `  U
)
1912, 18nvmcl 21197 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  y  e.  X )  ->  ( A M y )  e.  X )
205, 7, 17, 19syl3anc 1187 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A M y )  e.  X )
21 minveco.n . . . . . . 7  |-  N  =  ( normCV `  U )
2212, 21nvcl 21217 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  ( N `  ( A M y ) )  e.  RR )
235, 20, 22syl2anc 645 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A M y ) )  e.  RR )
24 eqid 2284 . . . . 5  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
2523, 24fmptd 5645 . . . 4  |-  ( ph  ->  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) : Y --> RR )
26 frn 5360 . . . 4  |-  ( ( y  e.  Y  |->  ( N `  ( A M y ) ) ) : Y --> RR  ->  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  C_  RR )
2725, 26syl 17 . . 3  |-  ( ph  ->  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  C_  RR )
281, 27syl5eqss 3223 . 2  |-  ( ph  ->  R  C_  RR )
2910simprd 451 . . . . . 6  |-  ( ph  ->  W  e.  CBan )
30 bnnv 21437 . . . . . 6  |-  ( W  e.  CBan  ->  W  e.  NrmCVec )
31 eqid 2284 . . . . . . 7  |-  ( 0vec `  W )  =  (
0vec `  W )
3213, 31nvzcl 21184 . . . . . 6  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  Y )
3329, 30, 323syl 20 . . . . 5  |-  ( ph  ->  ( 0vec `  W
)  e.  Y )
34 fvex 5499 . . . . . 6  |-  ( N `
 ( A M y ) )  e. 
_V
3534, 24dmmpti 5338 . . . . 5  |-  dom  ( 
y  e.  Y  |->  ( N `  ( A M y ) ) )  =  Y
3633, 35syl6eleqr 2375 . . . 4  |-  ( ph  ->  ( 0vec `  W
)  e.  dom  ( 
y  e.  Y  |->  ( N `  ( A M y ) ) ) )
37 ne0i 3462 . . . 4  |-  ( (
0vec `  W )  e.  dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  ->  dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/) )
3836, 37syl 17 . . 3  |-  ( ph  ->  dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/) )
39 dm0rn0 4894 . . . . 5  |-  ( dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/)  <->  ran  (  y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  (/) )
401eqeq1i 2291 . . . . 5  |-  ( R  =  (/)  <->  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/) )
4139, 40bitr4i 245 . . . 4  |-  ( dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/)  <->  R  =  (/) )
4241necon3bii 2479 . . 3  |-  ( dom  (  y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/)  <->  R  =/=  (/) )
4338, 42sylib 190 . 2  |-  ( ph  ->  R  =/=  (/) )
4412, 21nvge0 21232 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  0  <_  ( N `  ( A M y ) ) )
455, 20, 44syl2anc 645 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  0  <_  ( N `  ( A M y ) ) )
4645ralrimiva 2627 . . . 4  |-  ( ph  ->  A. y  e.  Y 
0  <_  ( N `  ( A M y ) ) )
4734rgenw 2611 . . . . 5  |-  A. y  e.  Y  ( N `  ( A M y ) )  e.  _V
48 breq2 4028 . . . . . 6  |-  ( w  =  ( N `  ( A M y ) )  ->  ( 0  <_  w  <->  0  <_  ( N `  ( A M y ) ) ) )
4924, 48ralrnmpt 5630 . . . . 5  |-  ( A. y  e.  Y  ( N `  ( A M y ) )  e.  _V  ->  ( A. w  e.  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A M y ) ) ) )
5047, 49ax-mp 10 . . . 4  |-  ( A. w  e.  ran  (  y  e.  Y  |->  ( N `
 ( A M y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A M y ) ) )
5146, 50sylibr 205 . . 3  |-  ( ph  ->  A. w  e.  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w
)
521raleqi 2741 . . 3  |-  ( A. w  e.  R  0  <_  w  <->  A. w  e.  ran  (  y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w
)
5351, 52sylibr 205 . 2  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
5428, 43, 533jca 1137 1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1628    e. wcel 1688    =/= wne 2447   A.wral 2544   _Vcvv 2789    i^i cin 3152    C_ wss 3153   (/)c0 3456   class class class wbr 4024    e. cmpt 4078   dom cdm 4688   ran crn 4689   -->wf 5217   ` cfv 5221  (class class class)co 5819   RRcr 8731   0cc0 8732    <_ cle 8863   MetOpencmopn 16366   NrmCVeccnv 21132   BaseSetcba 21134   0veccn0v 21136   -vcnsb 21137   normCVcnmcv 21138   IndMetcims 21139   SubSpcss 21289   CPreHil OLDccphlo 21382   CBanccbn 21433
This theorem is referenced by:  minvecolem2  21446  minvecolem3  21447  minvecolem4c  21450  minvecolem4  21451  minvecolem5  21452  minvecolem6  21453
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-grpo 20850  df-gid 20851  df-ginv 20852  df-gdiv 20853  df-ablo 20941  df-vc 21094  df-nv 21140  df-va 21143  df-ba 21144  df-sm 21145  df-0v 21146  df-vs 21147  df-nmcv 21148  df-ssp 21290  df-ph 21383  df-cbn 21434
  Copyright terms: Public domain W3C validator