HomeHome Metamath Proof Explorer
Theorem List (p. 104 of 328)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-22421)
  Hilbert Space Explorer  Hilbert Space Explorer
(22422-23944)
  Users' Mathboxes  Users' Mathboxes
(23945-32762)
 

Theorem List for Metamath Proof Explorer - 10301-10400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnssz 10301 Natural numbers are a subset of integers. (Contributed by NM, 9-Jan-2002.)
 |- 
 NN  C_  ZZ
 
Theoremnn0ssz 10302 Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.)
 |- 
 NN0  C_  ZZ
 
Theoremnnz 10303 A natural number is an integer. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  NN  ->  N  e.  ZZ )
 
Theoremnn0z 10304 A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  NN0  ->  N  e.  ZZ )
 
Theoremnnzi 10305 A natural number is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  N  e.  NN   =>    |-  N  e.  ZZ
 
Theoremnn0zi 10306 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  N  e.  NN0   =>    |-  N  e.  ZZ
 
Theoremelnnz1 10307 Natural number property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  1  <_  N ) )
 
Theoremznnnlt1 10308 An integer is not a natural number iff it is less than one. (Contributed by NM, 13-Jul-2005.)
 |-  ( N  e.  ZZ  ->  ( -.  N  e.  NN 
 <->  N  <  1 ) )
 
Theoremnnzrab 10309 Natural numbers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
 |- 
 NN  =  { x  e.  ZZ  |  1  <_  x }
 
Theoremnn0zrab 10310 Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
 |- 
 NN0  =  { x  e.  ZZ  |  0  <_  x }
 
Theorem1z 10311 One is an integer. (Contributed by NM, 10-May-2004.)
 |-  1  e.  ZZ
 
Theorem2z 10312 Two is an integer. (Contributed by NM, 10-May-2004.)
 |-  2  e.  ZZ
 
Theoremznegcl 10313 Closure law for negative integers. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  ZZ  -> 
 -u N  e.  ZZ )
 
Theoremznegclb 10314 A number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.)
 |-  ( A  e.  CC  ->  ( A  e.  ZZ  <->  -u A  e.  ZZ ) )
 
Theoremnn0negz 10315 The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  NN0  ->  -u N  e.  ZZ )
 
Theoremnn0negzi 10316 The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  N  e.  NN0   =>    |-  -u N  e.  ZZ
 
Theoremzaddcl 10317 Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N )  e.  ZZ )
 
Theorempeano2z 10318 Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
 |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
 
Theoremzsubcl 10319 Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N )  e.  ZZ )
 
Theorempeano2zm 10320 "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.)
 |-  ( N  e.  ZZ  ->  ( N  -  1
 )  e.  ZZ )
 
Theoremzrevaddcl 10321 Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.)
 |-  ( N  e.  ZZ  ->  ( ( M  e.  CC  /\  ( M  +  N )  e.  ZZ ) 
 <->  M  e.  ZZ )
 )
 
Theoremznnsub 10322 The positive difference of unequal integers is a natural number. (Generalization of nnsub 10038.) (Contributed by NM, 11-May-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <-> 
 ( N  -  M )  e.  NN )
 )
 
Theoremznn0sub 10323 The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 10270.) (Contributed by NM, 14-Jul-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <-> 
 ( N  -  M )  e.  NN0 ) )
 
Theoremzmulcl 10324 Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  e.  ZZ )
 
Theoremzltp1le 10325 Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <-> 
 ( M  +  1 )  <_  N )
 )
 
Theoremzleltp1 10326 Integer ordering relation. (Contributed by NM, 10-May-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  M  <  ( N  +  1 ) ) )
 
Theoremzlem1lt 10327 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <-> 
 ( M  -  1
 )  <  N )
 )
 
Theoremzltlem1 10328 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  M  <_  ( N  -  1 ) ) )
 
Theoremnnleltp1 10329 Natural number ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <_  B  <->  A  <  ( B  +  1 ) ) )
 
Theoremnnltp1le 10330 Natural number ordering relation. (Contributed by NM, 19-Aug-2001.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  <-> 
 ( A  +  1 )  <_  B )
 )
 
Theoremnnaddm1cl 10331 Closure of addition of natural numbers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  +  B )  -  1 )  e.  NN )
 
Theoremnn0ltp1le 10332 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <  N  <->  ( M  +  1 ) 
 <_  N ) )
 
Theoremnn0leltp1 10333 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <_  N  <->  M  <  ( N  +  1 ) ) )
 
Theoremnn0ltlem1 10334 Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <  N  <->  M 
 <_  ( N  -  1
 ) ) )
 
Theoremnn0sub2 10335 Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( N  -  M )  e. 
 NN0 )
 
Theoremnn0lt10b 10336 A nonnegative integer less than  1 is  0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( N  e.  NN0  ->  ( N  <  1  <->  N  =  0
 ) )
 
Theoremnn0lem1lt 10337 Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <_  N  <->  ( M  -  1 )  <  N ) )
 
Theoremnnlem1lt 10338 Natural number ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  <_  N  <-> 
 ( M  -  1
 )  <  N )
 )
 
Theoremnnltlem1 10339 Natural number ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  <  N  <->  M  <_  ( N  -  1 ) ) )
 
Theoremzdiv 10340* Two ways to express " M divides  N. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <->  ( N  /  M )  e.  ZZ ) )
 
Theoremzdivadd 10341 Property of divisibility: if  D divides  A and  B then it divides  A  +  B. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( ( D  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  /  D )  e.  ZZ  /\  ( B  /  D )  e. 
 ZZ ) )  ->  ( ( A  +  B )  /  D )  e.  ZZ )
 
Theoremzdivmul 10342 Property of divisibility: if  D divides  A then it divides  B  x.  A. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( ( D  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A 
 /  D )  e. 
 ZZ )  ->  (
 ( B  x.  A )  /  D )  e. 
 ZZ )
 
Theoremzextle 10343* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\ 
 A. k  e.  ZZ  ( k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
 
Theoremzextlt 10344* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\ 
 A. k  e.  ZZ  ( k  <  M  <->  k  <  N ) )  ->  M  =  N )
 
Theoremrecnz 10345 The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  RR  /\  1  <  A )  ->  -.  ( 1  /  A )  e.  ZZ )
 
Theorembtwnnz 10346 A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  ZZ  /\  A  <  B  /\  B  <  ( A  +  1 ) ) 
 ->  -.  B  e.  ZZ )
 
Theoremgtndiv 10347 A larger number does not divide a smaller natural number. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A ) 
 ->  -.  ( B  /  A )  e.  ZZ )
 
Theoremhalfnz 10348 One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
 |- 
 -.  ( 1  / 
 2 )  e.  ZZ
 
Theoremsuprzcl 10349* The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
 |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  ->  sup ( A ,  RR ,  <  )  e.  A )
 
Theoremprime 10350* Two ways to express " A is a prime number (or 1)." See also isprm 13081. (Contributed by NM, 4-May-2005.)
 |-  ( A  e.  NN  ->  ( A. x  e. 
 NN  ( ( A 
 /  x )  e. 
 NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  < 
 x  /\  x  <_  A 
 /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
 
Theoremmsqznn 10351 The square of a nonzero integer is a natural number. (Contributed by NM, 2-Aug-2004.)
 |-  ( ( A  e.  ZZ  /\  A  =/=  0
 )  ->  ( A  x.  A )  e.  NN )
 
Theoremzneo 10352 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A )  =/=  (
 ( 2  x.  B )  +  1 )
 )
 
Theoremnneo 10353 A natural number is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
 |-  ( N  e.  NN  ->  ( ( N  / 
 2 )  e.  NN  <->  -.  ( ( N  +  1 )  /  2
 )  e.  NN )
 )
 
Theoremnneoi 10354 A natural number is even or odd but not both. (Contributed by NM, 20-Aug-2001.)
 |-  N  e.  NN   =>    |-  ( ( N 
 /  2 )  e. 
 NN 
 <->  -.  ( ( N  +  1 )  / 
 2 )  e.  NN )
 
Theoremzeo 10355 An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
 |-  ( N  e.  ZZ  ->  ( ( N  / 
 2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2
 )  e.  ZZ )
 )
 
Theoremzeo2 10356 An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
 |-  ( N  e.  ZZ  ->  ( ( N  / 
 2 )  e.  ZZ  <->  -.  ( ( N  +  1 )  /  2
 )  e.  ZZ )
 )
 
Theorempeano2uz2 10357* Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
 |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  ->  ( B  +  1
 )  e.  { x  e.  ZZ  |  A  <_  x } )
 
Theorempeano5uzi 10358* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
 |-  N  e.  ZZ   =>    |-  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  { k  e.  ZZ  |  N  <_  k }  C_  A )
 
Theorempeano5uzti 10359* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
 |-  ( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  { k  e. 
 ZZ  |  N  <_  k }  C_  A )
 )
 
Theoremdfuzi 10360* An expression for the upper integers that start at  N that is analogous to df-nn 10001 for natural numbers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
 |-  N  e.  ZZ   =>    |-  { z  e. 
 ZZ  |  N  <_  z }  =  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }
 
Theoremuzind 10361* Induction on the upper integers that start at  M. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis. (Contributed by NM, 5-Jul-2005.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  ( ch  ->  th ) )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
 
Theoremuzind2 10362* Induction on the upper integers that start after an integer  M. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis. (Contributed by NM, 25-Jul-2005.)
 |-  ( j  =  ( M  +  1 ) 
 ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <  k )  ->  ( ch  ->  th ) )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <  N )  ->  ta )
 
Theoremuzind3 10363* Induction on the upper integers that start at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction hypothesis. (Contributed by NM, 26-Jul-2005.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  m  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( m  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_  k }
 )  ->  ( ch  ->  th ) )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_  k }
 )  ->  ta )
 
TheoremuzindOLD 10364* Induction on the upper integers that start at an integer  B. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis.

Warning: The HTML proof page is 3/4 megabyte in size. An attempt to shorten it is on my to-do list. Anyone is welcome to try. (Contributed by NM, 11-May-2004.) (New usage is discouraged.) (Proof modification is discouraged.)

 |-  ( x  =  B  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 ( ( y  e. 
 ZZ  /\  B  e.  ZZ )  /\  B  <_  y )  ->  ( ch  ->  th ) )   =>    |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  B  <_  A )  ->  ta )
 
Theoremuzind3OLD 10365* Induction on the set of upper integers that starts at  B. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction hypothesis. (Contributed by NM, 9-Nov-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( x  =  B  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 ( B  e.  ZZ  /\  y  e.  { z  e.  ZZ  |  B  <_  z } )  ->  ( ch  ->  th ) )   =>    |-  ( ( B  e.  ZZ  /\  A  e.  { z  e.  ZZ  |  B  <_  z }
 )  ->  ta )
 
Theoremnn0ind 10366* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis. (Contributed by NM, 13-May-2004.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  NN0  ->  ( ch  ->  th )
 )   =>    |-  ( A  e.  NN0  ->  ta )
 
Theoremnn0indALT 10367* Principle of Mathematical Induction (inference schema) on nonnegative integers. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction hypothesis. Either nn0ind 10366 or nn0indALT 10367 may be used; see comment for nnind 10018. (Contributed by NM, 28-Nov-2005.)
 |-  ( y  e.  NN0  ->  ( ch  ->  th )
 )   &    |- 
 ps   &    |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   =>    |-  ( A  e.  NN0 
 ->  ta )
 
Theoremfzind 10368* Induction on the integers from  M to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( x  =  M  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  K  ->  (
 ph 
 <->  ta ) )   &    |-  (
 ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )   &    |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_  y  /\  y  <  N ) ) 
 ->  ( ch  ->  th )
 )   =>    |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) )  ->  ta )
 
Theoremfnn0ind 10369* Induction on the integers from  0 to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  K  ->  (
 ph 
 <->  ta ) )   &    |-  ( N  e.  NN0  ->  ps )   &    |-  (
 ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )   =>    |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
 
Theoremnn0ind-raph 10370* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  NN0  ->  ( ch  ->  th )
 )   =>    |-  ( A  e.  NN0  ->  ta )
 
Theoremzindd 10371* Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  ta ) )   &    |-  ( x  =  -u y  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  et ) )   &    |-  ( ze  ->  ps )   &    |-  ( ze  ->  ( y  e.  NN0  ->  ( ch  ->  ta )
 ) )   &    |-  ( ze  ->  ( y  e.  NN  ->  ( ch  ->  th )
 ) )   =>    |-  ( ze  ->  ( A  e.  ZZ  ->  et ) )
 
Theorembtwnz 10372* Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
 |-  ( A  e.  RR  ->  ( E. x  e. 
 ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
 
Theoremnn0zd 10373 A natural number is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   =>    |-  ( ph  ->  A  e.  ZZ )
 
Theoremnnzd 10374 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   =>    |-  ( ph  ->  A  e.  ZZ )
 
Theoremzred 10375 An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremzcnd 10376 An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  A  e.  CC )
 
Theoremznegcld 10377 Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  -u A  e.  ZZ )
 
Theorempeano2zd 10378 Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  ( A  +  1 )  e.  ZZ )
 
Theoremzaddcld 10379 Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   =>    |-  ( ph  ->  ( A  +  B )  e.  ZZ )
 
Theoremzsubcld 10380 Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   =>    |-  ( ph  ->  ( A  -  B )  e.  ZZ )
 
Theoremzmulcld 10381 Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   =>    |-  ( ph  ->  ( A  x.  B )  e.  ZZ )
 
5.4.8  Decimal arithmetic
 
Syntaxcdc 10382 Constant used for decimal constructor.
 class ; A B
 
Definitiondf-dec 10383 Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example,  (;;; 1 0 0 0  + ;;; 2 0 0 0 )  = ;;; 3 0 0 0 1kp2ke3k 21754. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |- ; A B  =  ( ( 10  x.  A )  +  B )
 
Theoremdecex 10384 A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |- ; A B  e.  _V
 
Theoremdeceq1 10385 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  ( A  =  B  -> ; A C  = ; B C )
 
Theoremdeceq2 10386 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  ( A  =  B  -> ; C A  = ; C B )
 
Theoremdeceq1i 10387 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  =  B   =>    |- ; A C  = ; B C
 
Theoremdeceq2i 10388 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  =  B   =>    |- ; C A  = ; C B
 
Theoremdeceq12i 10389 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  =  B   &    |-  C  =  D   =>    |- ; A C  = ; B D
 
Theoremnumnncl 10390 Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN   =>    |-  ( ( T  x.  A )  +  B )  e.  NN
 
Theoremnum0u 10391 Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   =>    |-  ( T  x.  A )  =  ( ( T  x.  A )  +  0 )
 
Theoremnum0h 10392 Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   =>    |-  A  =  ( ( T  x.  0 )  +  A )
 
Theoremnumcl 10393 Closure for a decimal integer (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |-  ( ( T  x.  A )  +  B )  e.  NN0
 
Theoremnumsuc 10394 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  ( B  +  1 )  =  C   &    |-  N  =  ( ( T  x.  A )  +  B )   =>    |-  ( N  +  1 )  =  ( ( T  x.  A )  +  C )
 
Theoremdecnncl 10395 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN   =>    |- ; A B  e.  NN
 
Theoremdeccl 10396 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |- ; A B  e.  NN0
 
Theoremdec0u 10397 Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   =>    |-  ( 10  x.  A )  = ; A 0
 
Theoremdec0h 10398 Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   =>    |-  A  = ; 0 A
 
Theoremnumnncl2 10399 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.)
 |-  T  e.  NN   &    |-  A  e.  NN   =>    |-  ( ( T  x.  A )  +  0
 )  e.  NN
 
Theoremdecnncl2 10400 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN   =>    |- ; A 0  e.  NN
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32762
  Copyright terms: Public domain < Previous  Next >