HomeHome Metamath Proof Explorer
Theorem List (p. 105 of 330)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-22459)
  Hilbert Space Explorer  Hilbert Space Explorer
(22460-23982)
  Users' Mathboxes  Users' Mathboxes
(23983-32936)
 

Theorem List for Metamath Proof Explorer - 10401-10500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremuzind3 10401* Induction on the upper integers that start at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction hypothesis. (Contributed by NM, 26-Jul-2005.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  m  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( m  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_  k }
 )  ->  ( ch  ->  th ) )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_  k }
 )  ->  ta )
 
TheoremuzindOLD 10402* Induction on the upper integers that start at an integer  B. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis.

Warning: The HTML proof page is 3/4 megabyte in size. An attempt to shorten it is on my to-do list. Anyone is welcome to try. (Contributed by NM, 11-May-2004.) (New usage is discouraged.) (Proof modification is discouraged.)

 |-  ( x  =  B  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 ( ( y  e. 
 ZZ  /\  B  e.  ZZ )  /\  B  <_  y )  ->  ( ch  ->  th ) )   =>    |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  B  <_  A )  ->  ta )
 
Theoremuzind3OLD 10403* Induction on the set of upper integers that starts at  B. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction hypothesis. (Contributed by NM, 9-Nov-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( x  =  B  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 ( B  e.  ZZ  /\  y  e.  { z  e.  ZZ  |  B  <_  z } )  ->  ( ch  ->  th ) )   =>    |-  ( ( B  e.  ZZ  /\  A  e.  { z  e.  ZZ  |  B  <_  z }
 )  ->  ta )
 
Theoremnn0ind 10404* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis. (Contributed by NM, 13-May-2004.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  NN0  ->  ( ch  ->  th )
 )   =>    |-  ( A  e.  NN0  ->  ta )
 
Theoremnn0indALT 10405* Principle of Mathematical Induction (inference schema) on nonnegative integers. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction hypothesis. Either nn0ind 10404 or nn0indALT 10405 may be used; see comment for nnind 10056. (Contributed by NM, 28-Nov-2005.)
 |-  ( y  e.  NN0  ->  ( ch  ->  th )
 )   &    |- 
 ps   &    |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   =>    |-  ( A  e.  NN0 
 ->  ta )
 
Theoremfzind 10406* Induction on the integers from  M to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( x  =  M  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  K  ->  (
 ph 
 <->  ta ) )   &    |-  (
 ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )   &    |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_  y  /\  y  <  N ) ) 
 ->  ( ch  ->  th )
 )   =>    |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) )  ->  ta )
 
Theoremfnn0ind 10407* Induction on the integers from  0 to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  K  ->  (
 ph 
 <->  ta ) )   &    |-  ( N  e.  NN0  ->  ps )   &    |-  (
 ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )   =>    |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
 
Theoremnn0ind-raph 10408* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  NN0  ->  ( ch  ->  th )
 )   =>    |-  ( A  e.  NN0  ->  ta )
 
Theoremzindd 10409* Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  ta ) )   &    |-  ( x  =  -u y  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  et ) )   &    |-  ( ze  ->  ps )   &    |-  ( ze  ->  ( y  e.  NN0  ->  ( ch  ->  ta )
 ) )   &    |-  ( ze  ->  ( y  e.  NN  ->  ( ch  ->  th )
 ) )   =>    |-  ( ze  ->  ( A  e.  ZZ  ->  et ) )
 
Theorembtwnz 10410* Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
 |-  ( A  e.  RR  ->  ( E. x  e. 
 ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
 
Theoremnn0zd 10411 A natural number is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   =>    |-  ( ph  ->  A  e.  ZZ )
 
Theoremnnzd 10412 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   =>    |-  ( ph  ->  A  e.  ZZ )
 
Theoremzred 10413 An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremzcnd 10414 An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  A  e.  CC )
 
Theoremznegcld 10415 Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  -u A  e.  ZZ )
 
Theorempeano2zd 10416 Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  ( A  +  1 )  e.  ZZ )
 
Theoremzaddcld 10417 Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   =>    |-  ( ph  ->  ( A  +  B )  e.  ZZ )
 
Theoremzsubcld 10418 Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   =>    |-  ( ph  ->  ( A  -  B )  e.  ZZ )
 
Theoremzmulcld 10419 Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  B  e.  ZZ )   =>    |-  ( ph  ->  ( A  x.  B )  e.  ZZ )
 
5.4.8  Decimal arithmetic
 
Syntaxcdc 10420 Constant used for decimal constructor.
 class ; A B
 
Definitiondf-dec 10421 Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example,  (;;; 1 0 0 0  + ;;; 2 0 0 0 )  = ;;; 3 0 0 0 1kp2ke3k 21792. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |- ; A B  =  ( ( 10  x.  A )  +  B )
 
Theoremdecex 10422 A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |- ; A B  e.  _V
 
Theoremdeceq1 10423 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  ( A  =  B  -> ; A C  = ; B C )
 
Theoremdeceq2 10424 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  ( A  =  B  -> ; C A  = ; C B )
 
Theoremdeceq1i 10425 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  =  B   =>    |- ; A C  = ; B C
 
Theoremdeceq2i 10426 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  =  B   =>    |- ; C A  = ; C B
 
Theoremdeceq12i 10427 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  =  B   &    |-  C  =  D   =>    |- ; A C  = ; B D
 
Theoremnumnncl 10428 Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN   =>    |-  ( ( T  x.  A )  +  B )  e.  NN
 
Theoremnum0u 10429 Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   =>    |-  ( T  x.  A )  =  ( ( T  x.  A )  +  0 )
 
Theoremnum0h 10430 Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   =>    |-  A  =  ( ( T  x.  0 )  +  A )
 
Theoremnumcl 10431 Closure for a decimal integer (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |-  ( ( T  x.  A )  +  B )  e.  NN0
 
Theoremnumsuc 10432 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  ( B  +  1 )  =  C   &    |-  N  =  ( ( T  x.  A )  +  B )   =>    |-  ( N  +  1 )  =  ( ( T  x.  A )  +  C )
 
Theoremdecnncl 10433 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN   =>    |- ; A B  e.  NN
 
Theoremdeccl 10434 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |- ; A B  e.  NN0
 
Theoremdec0u 10435 Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   =>    |-  ( 10  x.  A )  = ; A 0
 
Theoremdec0h 10436 Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   =>    |-  A  = ; 0 A
 
Theoremnumnncl2 10437 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.)
 |-  T  e.  NN   &    |-  A  e.  NN   =>    |-  ( ( T  x.  A )  +  0
 )  e.  NN
 
Theoremdecnncl2 10438 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN   =>    |- ; A 0  e.  NN
 
Theoremnumlt 10439 Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN   &    |-  B  <  C   =>    |-  ( ( T  x.  A )  +  B )  <  ( ( T  x.  A )  +  C )
 
Theoremnumltc 10440 Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  C  <  T   &    |-  A  <  B   =>    |-  ( ( T  x.  A )  +  C )  <  ( ( T  x.  B )  +  D )
 
Theoremdeclt 10441 Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN   &    |-  B  <  C   =>    |- ; A B  < ; A C
 
Theoremdecltc 10442 Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  C  <  10   &    |-  A  <  B   =>    |- ; A C  < ; B D
 
Theoremdecsuc 10443 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  ( B  +  1 )  =  C   &    |-  N  = ; A B   =>    |-  ( N  +  1 )  = ; A C
 
Theoremnumlti 10444 Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN   &    |-  A  e.  NN   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  C  <  T   =>    |-  C  <  (
 ( T  x.  A )  +  B )
 
Theoremdeclti 10445 Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  C  <  10   =>    |-  C  < ; A B
 
Theoremnumsucc 10446 The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  Y  e.  NN0   &    |-  T  =  ( Y  +  1 )   &    |-  A  e.  NN0   &    |-  ( A  +  1 )  =  B   &    |-  N  =  ( ( T  x.  A )  +  Y )   =>    |-  ( N  +  1 )  =  ( ( T  x.  B )  +  0 )
 
Theoremdecsucc 10447 The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  ( A  +  1 )  =  B   &    |-  N  = ; A 9   =>    |-  ( N  +  1 )  = ; B 0
 
Theorem1e0p1 10448 The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  1  =  ( 0  +  1 )
 
Theoremdec10p 10449 Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 10  +  A )  = ; 1 A
 
Theoremdec10 10450 The decimal form of 10. NB: In our presentations of large numbers later on, we will use our symbol for 10 at the highest digits when advantageous, because we can use this theorem to convert back to "long form" (where each digit is in the range 0-9) with no extra effort. However, we cannot do this for lower digits while maintaining the ease of use of the decimal system, since it requires nontrivial number knowledge (more than just equality theorems) to convert back. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |- 
 10  = ; 1 0
 
Theoremnumma 10451 Perform a multiply-add of two decimal integers  M and 
N against a fixed multiplicand  P (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  M  =  ( ( T  x.  A )  +  B )   &    |-  N  =  ( ( T  x.  C )  +  D )   &    |-  P  e.  NN0   &    |-  ( ( A  x.  P )  +  C )  =  E   &    |-  ( ( B  x.  P )  +  D )  =  F   =>    |-  (
 ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F )
 
Theoremnummac 10452 Perform a multiply-add of two decimal integers  M and 
N against a fixed multiplicand  P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  M  =  ( ( T  x.  A )  +  B )   &    |-  N  =  ( ( T  x.  C )  +  D )   &    |-  P  e.  NN0   &    |-  F  e.  NN0   &    |-  G  e.  NN0   &    |-  ( ( A  x.  P )  +  ( C  +  G )
 )  =  E   &    |-  (
 ( B  x.  P )  +  D )  =  ( ( T  x.  G )  +  F )   =>    |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F )
 
Theoremnumma2c 10453 Perform a multiply-add of two decimal integers  M and 
N against a fixed multiplicand  P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  M  =  ( ( T  x.  A )  +  B )   &    |-  N  =  ( ( T  x.  C )  +  D )   &    |-  P  e.  NN0   &    |-  F  e.  NN0   &    |-  G  e.  NN0   &    |-  ( ( P  x.  A )  +  ( C  +  G )
 )  =  E   &    |-  (
 ( P  x.  B )  +  D )  =  ( ( T  x.  G )  +  F )   =>    |-  ( ( P  x.  M )  +  N )  =  ( ( T  x.  E )  +  F )
 
Theoremnumadd 10454 Add two decimal integers  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  M  =  ( ( T  x.  A )  +  B )   &    |-  N  =  ( ( T  x.  C )  +  D )   &    |-  ( A  +  C )  =  E   &    |-  ( B  +  D )  =  F   =>    |-  ( M  +  N )  =  ( ( T  x.  E )  +  F )
 
Theoremnumaddc 10455 Add two decimal integers  M and  N (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  M  =  ( ( T  x.  A )  +  B )   &    |-  N  =  ( ( T  x.  C )  +  D )   &    |-  F  e.  NN0   &    |-  ( ( A  +  C )  +  1
 )  =  E   &    |-  ( B  +  D )  =  ( ( T  x.  1 )  +  F )   =>    |-  ( M  +  N )  =  ( ( T  x.  E )  +  F )
 
Theoremnummul1c 10456 The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  P  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  =  ( ( T  x.  A )  +  B )   &    |-  D  e.  NN0   &    |-  E  e.  NN0   &    |-  ( ( A  x.  P )  +  E )  =  C   &    |-  ( B  x.  P )  =  (
 ( T  x.  E )  +  D )   =>    |-  ( N  x.  P )  =  ( ( T  x.  C )  +  D )
 
Theoremnummul2c 10457 The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  T  e.  NN0   &    |-  P  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  =  ( ( T  x.  A )  +  B )   &    |-  D  e.  NN0   &    |-  E  e.  NN0   &    |-  ( ( P  x.  A )  +  E )  =  C   &    |-  ( P  x.  B )  =  (
 ( T  x.  E )  +  D )   =>    |-  ( P  x.  N )  =  ( ( T  x.  C )  +  D )
 
Theoremdecma 10458 Perform a multiply-add of two numerals  M and  N against a fixed multiplicand  P (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  M  = ; A B   &    |-  N  = ; C D   &    |-  P  e.  NN0   &    |-  (
 ( A  x.  P )  +  C )  =  E   &    |-  ( ( B  x.  P )  +  D )  =  F   =>    |-  (
 ( M  x.  P )  +  N )  = ; E F
 
Theoremdecmac 10459 Perform a multiply-add of two numerals  M and  N against a fixed multiplicand  P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  M  = ; A B   &    |-  N  = ; C D   &    |-  P  e.  NN0   &    |-  F  e.  NN0   &    |-  G  e.  NN0   &    |-  ( ( A  x.  P )  +  ( C  +  G )
 )  =  E   &    |-  (
 ( B  x.  P )  +  D )  = ; G F   =>    |-  ( ( M  x.  P )  +  N )  = ; E F
 
Theoremdecma2c 10460 Perform a multiply-add of two numerals  M and  N against a fixed multiplicand  P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  M  = ; A B   &    |-  N  = ; C D   &    |-  P  e.  NN0   &    |-  F  e.  NN0   &    |-  G  e.  NN0   &    |-  ( ( P  x.  A )  +  ( C  +  G )
 )  =  E   &    |-  (
 ( P  x.  B )  +  D )  = ; G F   =>    |-  ( ( P  x.  M )  +  N )  = ; E F
 
Theoremdecadd 10461 Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  M  = ; A B   &    |-  N  = ; C D   &    |-  ( A  +  C )  =  E   &    |-  ( B  +  D )  =  F   =>    |-  ( M  +  N )  = ; E F
 
Theoremdecaddc 10462 Add two numerals  M and  N (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  M  = ; A B   &    |-  N  = ; C D   &    |-  ( ( A  +  C )  +  1 )  =  E   &    |-  F  e.  NN0   &    |-  ( B  +  D )  = ; 1 F   =>    |-  ( M  +  N )  = ; E F
 
Theoremdecaddc2 10463 Add two numerals  M and  N (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  M  = ; A B   &    |-  N  = ; C D   &    |-  ( ( A  +  C )  +  1 )  =  E   &    |-  ( B  +  D )  =  10   =>    |-  ( M  +  N )  = ; E 0
 
Theoremdecaddi 10464 Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  e.  NN0   &    |-  M  = ; A B   &    |-  ( B  +  N )  =  C   =>    |-  ( M  +  N )  = ; A C
 
Theoremdecaddci 10465 Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  e.  NN0   &    |-  M  = ; A B   &    |-  ( A  +  1 )  =  D   &    |-  C  e.  NN0   &    |-  ( B  +  N )  = ; 1 C   =>    |-  ( M  +  N )  = ; D C
 
Theoremdecaddci2 10466 Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  e.  NN0   &    |-  M  = ; A B   &    |-  ( A  +  1 )  =  D   &    |-  ( B  +  N )  =  10   =>    |-  ( M  +  N )  = ; D 0
 
Theoremdecmul1c 10467 The product of a numeral with a number. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  P  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  = ; A B   &    |-  D  e.  NN0   &    |-  E  e.  NN0   &    |-  ( ( A  x.  P )  +  E )  =  C   &    |-  ( B  x.  P )  = ; E D   =>    |-  ( N  x.  P )  = ; C D
 
Theoremdecmul2c 10468 The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  P  e.  NN0   &    |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  N  = ; A B   &    |-  D  e.  NN0   &    |-  E  e.  NN0   &    |-  ( ( P  x.  A )  +  E )  =  C   &    |-  ( P  x.  B )  = ; E D   =>    |-  ( P  x.  N )  = ; C D
 
Theorem6p5lem 10469 Lemma for 6p5e11 10470 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  A  e.  NN0   &    |-  D  e.  NN0   &    |-  E  e.  NN0   &    |-  B  =  ( D  +  1 )   &    |-  C  =  ( E  +  1 )   &    |-  ( A  +  D )  = ; 1 E   =>    |-  ( A  +  B )  = ; 1 C
 
Theorem6p5e11 10470 6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 6  +  5 )  = ; 1 1
 
Theorem6p6e12 10471 6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 6  +  6 )  = ; 1 2
 
Theorem7p4e11 10472 7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  +  4 )  = ; 1 1
 
Theorem7p5e12 10473 7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  +  5 )  = ; 1 2
 
Theorem7p6e13 10474 7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  +  6 )  = ; 1 3
 
Theorem7p7e14 10475 7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 7  +  7 )  = ; 1 4
 
Theorem8p3e11 10476 8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  +  3 )  = ; 1 1
 
Theorem8p4e12 10477 8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  +  4 )  = ; 1 2
 
Theorem8p5e13 10478 8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  +  5 )  = ; 1 3
 
Theorem8p6e14 10479 8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  +  6 )  = ; 1 4
 
Theorem8p7e15 10480 8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  +  7 )  = ; 1 5
 
Theorem8p8e16 10481 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 8  +  8 )  = ; 1 6
 
Theorem9p2e11 10482 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  2 )  = ; 1 1
 
Theorem9p3e12 10483 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  3 )  = ; 1 2
 
Theorem9p4e13 10484 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  4 )  = ; 1 3
 
Theorem9p5e14 10485 9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  5 )  = ; 1 4
 
Theorem9p6e15 10486 9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  6 )  = ; 1 5
 
Theorem9p7e16 10487 9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  7 )  = ; 1 6
 
Theorem9p8e17 10488 9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  8 )  = ; 1 7
 
Theorem9p9e18 10489 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 9  +  9 )  = ; 1 8
 
Theorem10p10e20 10490 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 10  +  10 )  = ; 2 0
 
Theorem4t3lem 10491 Lemma for 4t3e12 10492 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  =  ( B  +  1 )   &    |-  ( A  x.  B )  =  D   &    |-  ( D  +  A )  =  E   =>    |-  ( A  x.  C )  =  E
 
Theorem4t3e12 10492 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 4  x.  3
 )  = ; 1 2
 
Theorem4t4e16 10493 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 4  x.  4
 )  = ; 1 6
 
Theorem5t3e15 10494 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 5  x.  3
 )  = ; 1 5
 
Theorem5t4e20 10495 5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 5  x.  4
 )  = ; 2 0
 
Theorem5t5e25 10496 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 5  x.  5
 )  = ; 2 5
 
Theorem6t2e12 10497 6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 6  x.  2
 )  = ; 1 2
 
Theorem6t3e18 10498 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 6  x.  3
 )  = ; 1 8
 
Theorem6t4e24 10499 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 6  x.  4
 )  = ; 2 4
 
Theorem6t5e30 10500 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  ( 6  x.  5
 )  = ; 3 0
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-32936
  Copyright terms: Public domain < Previous  Next >