HomeHome Metamath Proof Explorer
Theorem List (p. 106 of 320)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21553)
  Hilbert Space Explorer  Hilbert Space Explorer
(21554-23076)
  Users' Mathboxes  Users' Mathboxes
(23077-31972)
 

Theorem List for Metamath Proof Explorer - 10501-10600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-xmul 10501* Define multiplication over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  x e  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 ,  if (
 ( ( ( 0  <  y  /\  x  =  +oo )  \/  (
 y  <  0  /\  x  =  -oo ) )  \/  ( ( 0  <  x  /\  y  =  +oo )  \/  ( x  <  0  /\  y  =  -oo ) ) ) ,  +oo ,  if ( ( ( ( 0  <  y  /\  x  =  -oo )  \/  ( y  <  0  /\  x  =  +oo ) )  \/  (
 ( 0  <  x  /\  y  =  -oo )  \/  ( x  < 
 0  /\  y  =  +oo ) ) ) , 
 -oo ,  ( x  x.  y ) ) ) ) )
 
Theorempnfxr 10502 Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.)
 |- 
 +oo  e.  RR*
 
Theoremmnfxr 10503 Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |- 
 -oo  e.  RR*
 
Theoremltxr 10504 The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <RR  B )  \/  ( A  =  -oo  /\  B  =  +oo ) )  \/  ( ( A  e.  RR  /\  B  =  +oo )  \/  ( A  =  -oo  /\  B  e.  RR ) ) ) ) )
 
Theoremelxr 10505 Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  =  +oo  \/  A  =  -oo ) )
 
Theorempnfnemnf 10506 Plus and minus infinity are distinguished elements of  RR*. (Contributed by NM, 14-Oct-2005.)
 |- 
 +oo  =/=  -oo
 
Theoremxrnemnf 10507 An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/=  -oo )  <->  ( A  e.  RR  \/  A  =  +oo ) )
 
Theoremxrnepnf 10508 An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/=  +oo )  <->  ( A  e.  RR  \/  A  =  -oo ) )
 
Theoremxrltnr 10509 The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR*  ->  -.  A  <  A )
 
Theoremltpnf 10510 Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR  ->  A  <  +oo )
 
Theoremmnflt 10511 Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR  ->  -oo  <  A )
 
Theoremmnfltpnf 10512 Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
 |- 
 -oo  <  +oo
 
Theoremmnfltxr 10513 Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
 |-  ( ( A  e.  RR  \/  A  =  +oo )  ->  -oo  <  A )
 
Theorempnfnlt 10514 No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
 |-  ( A  e.  RR*  ->  -.  +oo  <  A )
 
Theoremnltmnf 10515 No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.)
 |-  ( A  e.  RR*  ->  -.  A  <  -oo )
 
Theorempnfge 10516 Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.)
 |-  ( A  e.  RR*  ->  A  <_  +oo )
 
Theoremmnfle 10517 Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.)
 |-  ( A  e.  RR*  ->  -oo  <_  A )
 
Theoremxrltnsym 10518 Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  -.  B  <  A ) )
 
Theoremxrltnsym2 10519 'Less than' is antisymmetric and irreflexive for extended reals. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -.  ( A  <  B 
 /\  B  <  A ) )
 
Theoremxrlttri 10520 Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri 8856 or axlttri 8939. (Contributed by NM, 14-Oct-2005.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  -.  ( A  =  B  \/  B  <  A ) ) )
 
Theoremxrlttr 10521 Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <  B  /\  B  <  C ) 
 ->  A  <  C ) )
 
Theoremxrltso 10522 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.)
 |- 
 <  Or  RR*
 
Theoremxrlttri2 10523 Trichotomy law for 'less than' for extended reals. (Contributed by NM, 10-Dec-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
 
Theoremxrlttri3 10524 Trichotomy law for 'less than' for extended reals. (Contributed by NM, 9-Feb-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
 
Theoremxrleloe 10525 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
 ) )
 
Theoremxrleltne 10526 'Less than or equal to' implies 'less than' is not 'equals', for extended reals. (Contributed by NM, 9-Feb-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( A  <  B  <->  B  =/=  A ) )
 
Theoremxrltlen 10527 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  ( A  <_  B  /\  B  =/=  A ) ) )
 
Theoremdfle2 10528 Alternative definition of 'less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 6-Nov-2015.)
 |- 
 <_  =  (  <  u.  (  _I  |`  RR* )
 )
 
Theoremdflt2 10529 Alternative definition of 'less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 6-Nov-2015.)
 |- 
 <  =  (  <_  \  _I  )
 
Theoremxrltle 10530 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  A  <_  B )
 )
 
Theoremxrleid 10531 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.)
 |-  ( A  e.  RR*  ->  A  <_  A )
 
Theoremxrletri 10532 Trichotomy law for extended reals. (Contributed by NM, 7-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  \/  B  <_  A )
 )
 
Theoremxrletri3 10533 Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
 
Theoremxrlelttr 10534 Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <_  B  /\  B  <  C ) 
 ->  A  <  C ) )
 
Theoremxrltletr 10535 Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <  B  /\  B  <_  C )  ->  A  <  C ) )
 
Theoremxrletr 10536 Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <_  B  /\  B  <_  C )  ->  A  <_  C )
 )
 
Theoremxrlttrd 10537 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  A  <  C )
 
Theoremxrlelttrd 10538 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  A  <  C )
 
Theoremxrltletrd 10539 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  B  <_  C )   =>    |-  ( ph  ->  A  <  C )
 
Theoremxrletrd 10540 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  B 
 <_  C )   =>    |-  ( ph  ->  A  <_  C )
 
Theoremxrltne 10541 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  B  =/=  A )
 
Theoremnltpnft 10542 An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
 |-  ( A  e.  RR*  ->  ( A  =  +oo  <->  -.  A  <  +oo ) )
 
Theoremngtmnft 10543 An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
 |-  ( A  e.  RR*  ->  ( A  =  -oo  <->  -.  -oo 
 <  A ) )
 
Theoremxrrebnd 10544 An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
 |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  (  -oo  <  A  /\  A  <  +oo ) ) )
 
Theoremxrre 10545 A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  (  -oo  <  A  /\  A  <_  B ) )  ->  A  e.  RR )
 
Theoremxrre2 10546 An extended real between two others is real. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  ->  B  e.  RR )
 
Theoremxrre3 10547 A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B 
 <_  A  /\  A  <  +oo ) )  ->  A  e.  RR )
 
Theoremge0gtmnf 10548 A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  0  <_  A ) 
 ->  -oo  <  A )
 
Theoremge0nemnf 10549 A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  0  <_  A ) 
 ->  A  =/=  -oo )
 
Theoremxrrege0 10550 A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( 0 
 <_  A  /\  A  <_  B ) )  ->  A  e.  RR )
 
Theoremxrmax1 10551 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  if ( A  <_  B ,  B ,  A ) )
 
Theoremxrmax2 10552 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  if ( A  <_  B ,  B ,  A ) )
 
Theoremxrmin1 10553 The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( A  <_  B ,  A ,  B )  <_  A )
 
Theoremxrmin2 10554 The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( A  <_  B ,  A ,  B )  <_  B )
 
Theoremxrmaxeq 10555 The maximum of two extended reals is equal to the first if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  B  <_  A )  ->  if ( A  <_  B ,  B ,  A )  =  A )
 
Theoremxrmineq 10556 The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  B  <_  A )  ->  if ( A  <_  B ,  A ,  B )  =  B )
 
Theoremxrmaxlt 10557 Two ways of saying the maximum of two extended reals is less than a third. (Contributed by NM, 7-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( if ( A  <_  B ,  B ,  A )  <  C  <->  ( A  <  C 
 /\  B  <  C ) ) )
 
Theoremxrltmin 10558 Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  <  if ( B 
 <_  C ,  B ,  C )  <->  ( A  <  B 
 /\  A  <  C ) ) )
 
Theoremxrmaxle 10559 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( if ( A  <_  B ,  B ,  A ) 
 <_  C  <->  ( A  <_  C 
 /\  B  <_  C ) ) )
 
Theoremxrlemin 10560 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  <_  if ( B 
 <_  C ,  B ,  C )  <->  ( A  <_  B 
 /\  A  <_  C ) ) )
 
Theoremmax1 10561 A number is less than or equal to the maximum of it and another. See also max1ALT 10562. (Contributed by NM, 3-Apr-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  <_  if ( A  <_  B ,  B ,  A )
 )
 
Theoremmax1ALT 10562 A number is less than or equal to the maximum of it and another. This version of max1 10561 omits the  B  e.  RR antecedent. Although it doesn't exploit undefined behavior, it is still considered poor style, and the use of max1 10561 is preferred. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 3-Apr-2005.)
 |-  ( A  e.  RR  ->  A  <_  if ( A  <_  B ,  B ,  A ) )
 
Theoremmax2 10563 A number is less than or equal to the maximum of it and another. (Contributed by NM, 3-Apr-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  if ( A  <_  B ,  B ,  A )
 )
 
Theoremmin1 10564 The minimum of two numbers is less than or equal to the first. (Contributed by NM, 3-Aug-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  if ( A 
 <_  B ,  A ,  B )  <_  A )
 
Theoremmin2 10565 The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  if ( A 
 <_  B ,  A ,  B )  <_  B )
 
Theoremmaxle 10566 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by NM, 29-Sep-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( if ( A 
 <_  B ,  B ,  A )  <_  C  <->  ( A  <_  C 
 /\  B  <_  C ) ) )
 
Theoremlemin 10567 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  if ( B  <_  C ,  B ,  C )  <->  ( A  <_  B  /\  A  <_  C ) ) )
 
Theoremmaxlt 10568 Two ways of saying the maximum of two numbers is less than a third. (Contributed by NM, 3-Aug-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( if ( A 
 <_  B ,  B ,  A )  <  C  <->  ( A  <  C 
 /\  B  <  C ) ) )
 
Theoremltmin 10569 Two ways of saying a number is less than the minimum of two others. (Contributed by NM, 1-Sep-2006.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  if ( B  <_  C ,  B ,  C )  <->  ( A  <  B  /\  A  <  C ) ) )
 
Theoremmax0sub 10570 Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014.)
 |-  ( A  e.  RR  ->  ( if ( 0 
 <_  A ,  A , 
 0 )  -  if ( 0  <_  -u A ,  -u A ,  0 ) )  =  A )
 
Theoremifle 10571 An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  B  <_  A )  /\  ( ph  ->  ps ) )  ->  if ( ph ,  A ,  B )  <_  if ( ps ,  A ,  B ) )
 
Theoremz2ge 10572* There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. k  e.  ZZ  ( M  <_  k  /\  N  <_  k ) )
 
Theoremqbtwnre 10573* The rational numbers are dense in 
RR: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B ) 
 ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) )
 
Theoremqbtwnxr 10574* The rational numbers are dense in  RR*: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  E. x  e.  QQ  ( A  <  x 
 /\  x  <  B ) )
 
Theoremqsqueeze 10575* If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  QQ  ( 0  <  x  ->  A  <  x ) )  ->  A  =  0 )
 
Theoremqextltlem 10576* Lemma for qextlt 10577 and qextle . (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  E. x  e.  QQ  ( -.  ( x  <  A 
 <->  x  <  B ) 
 /\  -.  ( x  <_  A  <->  x  <_  B ) ) ) )
 
Theoremqextlt 10577* An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  A. x  e.  QQ  ( x  <  A  <->  x  <  B ) ) )
 
Theoremqextle 10578* An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  A. x  e.  QQ  ( x  <_  A  <->  x  <_  B ) ) )
 
Theoremxralrple 10579* Show that  A is less than  B by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( A  <_  B  <->  A. x  e.  RR+  A  <_  ( B  +  x ) ) )
 
Theoremalrple 10580* Show that  A is less than  B by showing that there is no positive bound on the difference. (Contributed by Mario Carneiro, 12-Jun-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  A. x  e.  RR+  A  <_  ( B  +  x ) ) )
 
Theoremxnegeq 10581 Equality of two extended numbers with  - e in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  =  B  -> 
 - e A  =  - e B )
 
Theoremxnegex 10582 A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  - e A  e.  _V
 
Theoremxnegpnf 10583 Minus  +oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
 |-  - e  +oo  =  -oo
 
Theoremxnegmnf 10584 Minus  -oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.)
 |-  - e  -oo  =  +oo
 
Theoremrexneg 10585 Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR  -> 
 - e A  =  -u A )
 
Theoremxneg0 10586 The negative of zero. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  - e 0  =  0
 
Theoremxnegcl 10587 Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  - e A  e.  RR* )
 
Theoremxnegneg 10588 Extended real version of negneg 9142. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  - e  - e A  =  A )
 
Theoremxneg11 10589 Extended real version of neg11 9143. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (  - e A  =  - e B  <->  A  =  B ) )
 
Theoremxltnegi 10590 Forward direction of xltneg 10591. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  - e B  <  - e A )
 
Theoremxltneg 10591 Extended real version of ltneg 9319. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  - e B  <  - e A ) )
 
Theoremxleneg 10592 Extended real version of leneg 9322. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  - e B  <_  - e A ) )
 
Theoremxlt0neg1 10593 Extended real version of lt0neg1 9325. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( A  <  0  <->  0  <  - e A ) )
 
Theoremxlt0neg2 10594 Extended real version of lt0neg2 9326. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( 0  <  A  <->  - e A  <  0 ) )
 
Theoremxle0neg1 10595 Extended real version of le0neg1 9327. (Contributed by Mario Carneiro, 9-Sep-2015.)
 |-  ( A  e.  RR*  ->  ( A  <_  0  <->  0  <_  - e A ) )
 
Theoremxle0neg2 10596 Extended real version of le0neg2 9328. (Contributed by Mario Carneiro, 9-Sep-2015.)
 |-  ( A  e.  RR*  ->  ( 0  <_  A  <->  - e A  <_  0 ) )
 
Theoremxaddval 10597 Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A + e B )  =  if ( A  =  +oo ,  if ( B  =  -oo ,  0 ,  +oo ) ,  if ( A  =  -oo ,  if ( B  =  +oo ,  0 ,  -oo ) ,  if ( B  =  +oo ,  +oo ,  if ( B  =  -oo , 
 -oo ,  ( A  +  B ) ) ) ) ) )
 
Theoremxaddf 10598 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |- 
 + e : (
 RR*  X.  RR* ) --> RR*
 
Theoremxmulval 10599 Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A x e B )  =  if ( ( A  =  0  \/  B  =  0 ) ,  0 ,  if ( ( ( ( 0  <  B  /\  A  =  +oo )  \/  ( B  <  0  /\  A  =  -oo )
 )  \/  ( ( 0  <  A  /\  B  =  +oo )  \/  ( A  <  0  /\  B  =  -oo )
 ) ) ,  +oo ,  if ( ( ( ( 0  <  B  /\  A  =  -oo )  \/  ( B  <  0  /\  A  =  +oo )
 )  \/  ( ( 0  <  A  /\  B  =  -oo )  \/  ( A  <  0  /\  B  =  +oo )
 ) ) ,  -oo ,  ( A  x.  B ) ) ) ) )
 
Theoremxaddpnf1 10600 Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/=  -oo )  ->  ( A + e  +oo )  =  +oo )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-31972
  Copyright terms: Public domain < Previous  Next >