HomeHome Metamath Proof Explorer
Theorem List (p. 107 of 322)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21498)
  Hilbert Space Explorer  Hilbert Space Explorer
(21499-23021)
  Users' Mathboxes  Users' Mathboxes
(23022-32154)
 

Theorem List for Metamath Proof Explorer - 10601-10700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxmulm1 10601 Extended real version of mulm1 9221. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( -u 1 x e A )  =  - e A )
 
Theoremxmulasslem2 10602 Lemma for xmulass 10607. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( 0  <  A  /\  A  =  -oo )  ->  ph )
 
Theoremxmulgt0 10603 Extended real version of mulgt0 8900. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  0  <  A )  /\  ( B  e.  RR*  /\  0  <  B ) )  -> 
 0  <  ( A x e B ) )
 
Theoremxmulge0 10604 Extended real version of mulge0 9291. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B ) )  -> 
 0  <_  ( A x e B ) )
 
Theoremxmulasslem 10605* Lemma for xmulass 10607. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( x  =  D  ->  ( ps  <->  X  =  Y ) )   &    |-  ( x  =  - e D  ->  ( ps 
 <->  E  =  F ) )   &    |-  ( ph  ->  X  e.  RR* )   &    |-  ( ph  ->  Y  e.  RR* )   &    |-  ( ph  ->  D  e.  RR* )   &    |-  ( ( ph  /\  ( x  e.  RR*  /\  0  <  x ) )  ->  ps )   &    |-  ( ph  ->  ( x  =  0  ->  ps )
 )   &    |-  ( ph  ->  E  =  - e X )   &    |-  ( ph  ->  F  =  - e Y )   =>    |-  ( ph  ->  X  =  Y )
 
Theoremxmulasslem3 10606 Lemma for xmulass 10607. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  0  <  A )  /\  ( B  e.  RR*  /\  0  <  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  ->  ( ( A x e B ) x e C )  =  ( A x e ( B x e C ) ) )
 
Theoremxmulass 10607 Associativity of the extended real multiplication operation. Surprisingly, there are no restrictions on the values, unlike xaddass 10569 which has to avoid the "undefined" combinations  +oo + e  -oo and  -oo + e  +oo. The equivalent "undefined" expression here would be  0 x e 
+oo, but since this is defined to equal  0 any zeroes in the expression make the whole thing evaluate to zero (on both sides), thus establishing the identity in this case. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A x e B ) x e C )  =  ( A x e ( B x e C ) ) )
 
Theoremxlemul1a 10608 Extended real version of lemul1a 9610. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( C  e.  RR*  /\  0  <_  C )
 )  /\  A  <_  B )  ->  ( A x e C )  <_  ( B x e C ) )
 
Theoremxlemul2a 10609 Extended real version of lemul2a 9611. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( C  e.  RR*  /\  0  <_  C )
 )  /\  A  <_  B )  ->  ( C x e A )  <_  ( C x e B ) )
 
Theoremxlemul1 10610 Extended real version of lemul1 9608. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR+ )  ->  ( A  <_  B  <->  ( A x e C )  <_  ( B x e C ) ) )
 
Theoremxlemul2 10611 Extended real version of lemul2 9609. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR+ )  ->  ( A  <_  B  <->  ( C x e A )  <_  ( C x e B ) ) )
 
Theoremxltmul1 10612 Extended real version of ltmul1 9606. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR+ )  ->  ( A  <  B  <->  ( A x e C )  <  ( B x e C ) ) )
 
Theoremxltmul2 10613 Extended real version of ltmul2 9607. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR+ )  ->  ( A  <  B  <->  ( C x e A )  <  ( C x e B ) ) )
 
Theoremxadddilem 10614 Lemma for xadddi 10615. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e ( A x e C ) ) )
 
Theoremxadddi 10615 Distributive property for extended real addition and multiplication. Like xaddass 10569, this has an unusual domain of correctness due to counterexamples like  (  +oo  x.  (
2  -  1 ) )  =  -oo  =/=  ( (  +oo  x.  2 )  -  (  +oo  x.  1 ) )  =  (  +oo  - 
+oo )  =  0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A x e
 ( B + e C ) )  =  ( ( A x e B ) + e
 ( A x e C ) ) )
 
Theoremxadddir 10616 Commuted version of xadddi 10615. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  (
 ( A + e B ) x e C )  =  (
 ( A x e C ) + e
 ( B x e C ) ) )
 
Theoremxadddi2 10617 The assumption that the multiplier be real in xadddi 10615 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <_  C )
 )  ->  ( A x e ( B + e C ) )  =  ( ( A x e B ) + e
 ( A x e C ) ) )
 
Theoremxadddi2r 10618 Commuted version of xadddi2 10617. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  C  e.  RR* )  ->  (
 ( A + e B ) x e C )  =  (
 ( A x e C ) + e
 ( B x e C ) ) )
 
Theoremx2times 10619 Extended real version of 2times 9843. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( 2 x e A )  =  ( A + e A ) )
 
Theoremxnegcld 10620 Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  - e A  e.  RR* )
 
Theoremxaddcld 10621 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  ( A + e B )  e.  RR* )
 
Theoremxmulcld 10622 Closure of extended real multiplication. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  ( A x e B )  e.  RR* )
 
5.5.3  Supremum on the extended reals
 
Theoremxrsupexmnf 10623* Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.)
 |-  ( E. x  e.  RR*  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e.  RR*  ( y  <  x  ->  E. z  e.  A  y  <  z ) ) 
 ->  E. x  e.  RR*  ( A. y  e.  ( A  u.  {  -oo } )  -.  x  <  y  /\  A. y  e.  RR*  (
 y  <  x  ->  E. z  e.  ( A  u.  {  -oo } )
 y  <  z )
 ) )
 
Theoremxrinfmexpnf 10624* Adding plus infinity to a set does not affect the existence of its infimum. (Contributed by NM, 19-Jan-2006.)
 |-  ( E. x  e.  RR*  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) 
 ->  E. x  e.  RR*  ( A. y  e.  ( A  u.  {  +oo } )  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  ( A  u.  {  +oo } ) z  < 
 y ) ) )
 
Theoremxrsupsslem 10625* Lemma for xrsupss 10627. (Contributed by NM, 25-Oct-2005.)
 |-  ( ( A  C_  RR*  /\  ( A  C_  RR  \/  +oo  e.  A ) )  ->  E. x  e.  RR*  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e.  RR*  ( y  <  x  ->  E. z  e.  A  y  <  z ) ) )
 
Theoremxrinfmsslem 10626* Lemma for xrinfmss 10628. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  C_  RR*  /\  ( A  C_  RR  \/  -oo  e.  A ) )  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )
 
Theoremxrsupss 10627* Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005.)
 |-  ( A  C_  RR*  ->  E. x  e.  RR*  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR*  (
 y  <  x  ->  E. z  e.  A  y  <  z ) ) )
 
Theoremxrinfmss 10628* Any subset of extended reals has an infimum. (Contributed by NM, 25-Oct-2005.)
 |-  ( A  C_  RR*  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  A  z  <  y
 ) ) )
 
Theoremxrinfmss2 10629* Any subset of extended reals has an infimum. (Contributed by Mario Carneiro, 16-Mar-2014.)
 |-  ( A  C_  RR*  ->  E. x  e.  RR*  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR*  ( y `'  <  x 
 ->  E. z  e.  A  y `'  <  z ) ) )
 
Theoremxrub 10630* By quantifying only over reals, we can specify any extended real upper bound for any set of extended reals. (Contributed by NM, 9-Apr-2006.)
 |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( A. x  e. 
 RR  ( x  <  B  ->  E. y  e.  A  x  <  y )  <->  A. x  e.  RR*  ( x  <  B  ->  E. y  e.  A  x  <  y ) ) )
 
Theoremsupxr 10631* The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.) (Revised by Mario Carneiro, 21-Apr-2015.)
 |-  ( ( ( A 
 C_  RR*  /\  B  e.  RR* )  /\  ( A. x  e.  A  -.  B  <  x  /\  A. x  e.  RR  ( x  <  B  ->  E. y  e.  A  x  <  y
 ) ) )  ->  sup ( A ,  RR* ,  <  )  =  B )
 
Theoremsupxr2 10632* The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.)
 |-  ( ( ( A 
 C_  RR*  /\  B  e.  RR* )  /\  ( A. x  e.  A  x  <_  B  /\  A. x  e.  RR  ( x  <  B  ->  E. y  e.  A  x  <  y ) ) )  ->  sup ( A ,  RR* ,  <  )  =  B )
 
Theoremsupxrcl 10633 The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.)
 |-  ( A  C_  RR*  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
 
Theoremsupxrun 10634 The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  C_  RR*  /\  B  C_  RR*  /\  sup ( A ,  RR* ,  <  ) 
 <_  sup ( B ,  RR*
 ,  <  ) )  ->  sup ( ( A  u.  B ) , 
 RR* ,  <  )  = 
 sup ( B ,  RR*
 ,  <  ) )
 
Theoreminfmxrcl 10635 The infimum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 19-Jan-2006.) (Revised by Mario Carneiro, 16-Mar-2014.)
 |-  ( A  C_  RR*  ->  sup ( A ,  RR* ,  `'  <  )  e.  RR* )
 
Theoremsupxrmnf 10636 Adding minus infinity to a set does not affect its supremum. (Contributed by NM, 19-Jan-2006.)
 |-  ( A  C_  RR*  ->  sup ( ( A  u.  { 
 -oo } ) ,  RR* ,  <  )  =  sup ( A ,  RR* ,  <  ) )
 
Theoremsupxrpnf 10637 The supremum of a set of extended reals containing plus infnity is plus infinity. (Contributed by NM, 15-Oct-2005.)
 |-  ( ( A  C_  RR*  /\  +oo  e.  A ) 
 ->  sup ( A ,  RR*
 ,  <  )  =  +oo )
 
Theoremsupxrunb1 10638* The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
 |-  ( A  C_  RR*  ->  (
 A. x  e.  RR  E. y  e.  A  x  <_  y  <->  sup ( A ,  RR*
 ,  <  )  =  +oo ) )
 
Theoremsupxrunb2 10639* The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
 |-  ( A  C_  RR*  ->  (
 A. x  e.  RR  E. y  e.  A  x  <  y  <->  sup ( A ,  RR*
 ,  <  )  =  +oo ) )
 
Theoremsupxrbnd1 10640* The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.)
 |-  ( A  C_  RR*  ->  ( E. x  e.  RR  A. y  e.  A  y  <  x  <->  sup ( A ,  RR*
 ,  <  )  <  +oo ) )
 
Theoremsupxrbnd2 10641* The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.)
 |-  ( A  C_  RR*  ->  ( E. x  e.  RR  A. y  e.  A  y 
 <_  x  <->  sup ( A ,  RR*
 ,  <  )  <  +oo ) )
 
Theoremxrsup0 10642 The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005.)
 |- 
 sup ( (/) ,  RR* ,  <  )  =  -oo
 
Theoremsupxrub 10643 A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.)
 |-  ( ( A  C_  RR*  /\  B  e.  A ) 
 ->  B  <_  sup ( A ,  RR* ,  <  )
 )
 
Theoremsupxrlub 10644* The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by Mario Carneiro, 13-Sep-2015.)
 |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <  sup ( A ,  RR* ,  <  )  <->  E. x  e.  A  B  <  x ) )
 
Theoremsupxrleub 10645* The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by NM, 22-Feb-2006.) (Revised by Mario Carneiro, 6-Sep-2014.)
 |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( sup ( A ,  RR* ,  <  )  <_  B  <->  A. x  e.  A  x  <_  B ) )
 
Theoremsupxrre 10646* The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005.) (Proof shortened by Mario Carneiro, 7-Sep-2014.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  ->  sup ( A ,  RR*
 ,  <  )  =  sup ( A ,  RR ,  <  ) )
 
Theoremsupxrbnd 10647 The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  sup ( A ,  RR* ,  <  )  <  +oo )  ->  sup ( A ,  RR* ,  <  )  e.  RR )
 
Theoremsupxrgtmnf 10648 The supremum of a nonempty set of reals is greater than minus infinity. (Contributed by NM, 2-Feb-2006.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  -oo  <  sup ( A ,  RR*
 ,  <  ) )
 
Theoremsupxrre1 10649 The supremum of a nonempty set of reals is real iff it is less than plus infinity. (Contributed by NM, 5-Feb-2006.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( sup ( A ,  RR*
 ,  <  )  e.  RR 
 <-> 
 sup ( A ,  RR*
 ,  <  )  <  +oo ) )
 
Theoremsupxrre2 10650 The supremum of a nonempty set of reals is real iff it is not plus infinity. (Contributed by NM, 5-Feb-2006.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( sup ( A ,  RR*
 ,  <  )  e.  RR 
 <-> 
 sup ( A ,  RR*
 ,  <  )  =/=  +oo ) )
 
Theoremsupxrss 10651 Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015.)
 |-  ( ( A  C_  B  /\  B  C_  RR* )  ->  sup ( A ,  RR*
 ,  <  )  <_  sup ( B ,  RR* ,  <  ) )
 
Theoreminfmxrlb 10652 A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014.)
 |-  ( ( A  C_  RR*  /\  B  e.  A ) 
 ->  sup ( A ,  RR*
 ,  `'  <  )  <_  B )
 
Theoreminfmxrgelb 10653* The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by Mario Carneiro, 6-Sep-2014.)
 |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <_  sup ( A ,  RR* ,  `'  <  )  <->  A. x  e.  A  B  <_  x ) )
 
Theoreminfmxrre 10654* The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014.)
 |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  x  <_  y
 )  ->  sup ( A ,  RR* ,  `'  <  )  =  sup ( A ,  RR ,  `'  <  ) )
 
Theoremxrinfm0 10655 The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.)
 |- 
 sup ( (/) ,  RR* ,  `'  <  )  =  +oo
 
5.5.4  Real number intervals
 
Syntaxcioo 10656 Extend class notation with the set of open intervals of extended reals.
 class  (,)
 
Syntaxcioc 10657 Extend class notation with the set of open-below, closed-above intervals of extended reals.
 class  (,]
 
Syntaxcico 10658 Extend class notation with the set of closed-below, open-above intervals of extended reals.
 class  [,)
 
Syntaxcicc 10659 Extend class notation with the set of closed intervals of extended reals.
 class  [,]
 
Definitiondf-ioo 10660* Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <  z  /\  z  <  y ) } )
 
Definitiondf-ioc 10661* Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 (,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <  z  /\  z  <_  y ) } )
 
Definitiondf-ico 10662* Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) } )
 
Definitiondf-icc 10663* Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <_  z  /\  z  <_  y ) } )
 
Theoremixxval 10664* Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  =  {
 z  e.  RR*  |  ( A R z  /\  z S B ) }
 )
 
Theoremelixx1 10665* Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B ) 
 <->  ( C  e.  RR*  /\  A R C  /\  C S B ) ) )
 
Theoremixxf 10666* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  O : (
 RR*  X.  RR* ) --> ~P RR*
 
Theoremixxex 10667* The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  O  e.  _V
 
Theoremixxssxr 10668* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( A O B )  C_  RR*
 
Theoremelixx3g 10669* Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show  A  e.  RR* and  B  e.  RR*. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( C  e.  ( A O B )  <-> 
 ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A R C  /\  C S B ) ) )
 
Theoremixxssixx 10670* An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z U y ) }
 )   &    |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w 
 ->  A T w ) )   &    |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  ( w S B  ->  w U B ) )   =>    |-  ( A O B )  C_  ( A P B )
 
Theoremixxdisj 10671* Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z U y ) }
 )   &    |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B T w  <->  -.  w S B ) )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A O B )  i^i  ( B P C ) )  =  (/) )
 
Theoremixxun 10672* Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z U y ) }
 )   &    |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B T w  <->  -.  w S B ) )   &    |-  Q  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z U y ) } )   &    |-  (
 ( w  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( w S B  /\  B X C ) 
 ->  w U C ) )   &    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e.  RR* )  ->  ( ( A W B  /\  B T w )  ->  A R w ) )   =>    |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A W B  /\  B X C ) )  ->  ( ( A O B )  u.  ( B P C ) )  =  ( A Q C ) )
 
Theoremixxin 10673* Intersection of two intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  (
 ( A  e.  RR*  /\  C  e.  RR*  /\  z  e.  RR* )  ->  ( if ( A  <_  C ,  C ,  A ) R z  <->  ( A R z  /\  C R z ) ) )   &    |-  (
 ( z  e.  RR*  /\  B  e.  RR*  /\  D  e.  RR* )  ->  (
 z S if ( B  <_  D ,  B ,  D )  <->  ( z S B  /\  z S D ) ) )   =>    |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  ->  (
 ( A O B )  i^i  ( C O D ) )  =  ( if ( A 
 <_  C ,  C ,  A ) O if ( B  <_  D ,  B ,  D )
 ) )
 
Theoremixxss1 10674* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z S y ) }
 )   &    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e.  RR* )  ->  (
 ( A W B  /\  B T w ) 
 ->  A R w ) )   =>    |-  ( ( A  e.  RR*  /\  A W B ) 
 ->  ( B P C )  C_  ( A O C ) )
 
Theoremixxss2 10675* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z  /\  z T y ) }
 )   &    |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( ( w T B  /\  B W C )  ->  w S C ) )   =>    |-  ( ( C  e.  RR*  /\  B W C )  ->  ( A P B )  C_  ( A O C ) )
 
Theoremixxss12 10676* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z U y ) }
 )   &    |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e.  RR* )  ->  (
 ( A W C  /\  C T w ) 
 ->  A R w ) )   &    |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e.  RR* )  ->  ( ( w U D  /\  D X B )  ->  w S B ) )   =>    |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  ( C P D ) 
 C_  ( A O B ) )
 
Theoremixxub 10677* Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  (
 ( w  e.  RR*  /\  B  e.  RR* )  ->  ( w  <  B  ->  w S B ) )   &    |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  ( w S B  ->  w  <_  B ) )   &    |-  (
 ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )   &    |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
 ( A O B ) ,  RR* ,  <  )  =  B )
 
Theoremixxlb 10678* Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  (
 ( w  e.  RR*  /\  B  e.  RR* )  ->  ( w  <  B  ->  w S B ) )   &    |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  ( w S B  ->  w  <_  B ) )   &    |-  (
 ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A R w ) )   &    |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w  ->  A  <_  w ) )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( A O B )  =/=  (/) )  ->  sup (
 ( A O B ) ,  RR* ,  `'  <  )  =  A )
 
Theoremiooex 10679 The set of open intervals of extended reals exists. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |- 
 (,)  e.  _V
 
Theoremiooval 10680* Value of the open interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) } )
 
Theoremioo0 10681 An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( ( A (,) B )  =  (/)  <->  B  <_  A ) )
 
Theoremioon0 10682 An open interval of extended reals is nonempty iff the lower argument is less than the upper argument. (Contributed by NM, 2-Mar-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( ( A (,) B )  =/=  (/)  <->  A  <  B ) )
 
Theoremndmioo 10683 The open interval function's value is empty outside of its domain. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( -.  ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  (/) )
 
Theoremiooid 10684 An open interval with identical lower and upper bounds is empty. (Contributed by NM, 21-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( A (,) A )  =  (/)
 
Theoremelioo3g 10685 Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show  A  e.  RR* and  B  e.  RR*. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( C  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  C  <  B ) ) )
 
Theoremelioore 10686 A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( A  e.  ( B (,) C )  ->  A  e.  RR )
 
Theoremlbioo 10687 An open interval does not contain its left endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |- 
 -.  A  e.  ( A (,) B )
 
Theoremubioo 10688 An open interval does not contain its right endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |- 
 -.  B  e.  ( A (,) B )
 
Theoremiooval2 10689* Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR  |  ( A  <  x  /\  x  <  B ) } )
 
Theoremiooin 10690 Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  ->  (
 ( A (,) B )  i^i  ( C (,) D ) )  =  ( if ( A  <_  C ,  C ,  A ) (,) if ( B 
 <_  D ,  B ,  D ) ) )
 
Theoremiooss1 10691 Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.)
 |-  ( ( A  e.  RR*  /\  A  <_  B )  ->  ( B (,) C )  C_  ( A (,) C ) )
 
Theoremiooss2 10692 Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( C  e.  RR*  /\  B  <_  C )  ->  ( A (,) B )  C_  ( A (,) C ) )
 
Theoremiocval 10693* Value of the open-below, closed-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,] B )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <_  B ) } )
 
Theoremicoval 10694* Value of the closed-below, open-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  =  { x  e.  RR*  |  ( A 
 <_  x  /\  x  <  B ) } )
 
Theoremiccval 10695* Value of the closed interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,] B )  =  { x  e.  RR*  |  ( A 
 <_  x  /\  x  <_  B ) } )
 
Theoremelioo1 10696 Membership in an open interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  ( C  e.  RR*  /\  A  <  C  /\  C  <  B ) ) )
 
Theoremelioo2 10697 Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  ( C  e.  RR  /\  A  <  C  /\  C  <  B ) ) )
 
Theoremelioc1 10698 Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR*  /\  A  <  C  /\  C  <_  B ) ) )
 
Theoremelico1 10699 Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,) B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) ) )
 
Theoremelicc1 10700 Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32154
  Copyright terms: Public domain < Previous  Next >