HomeHome Metamath Proof Explorer
Theorem List (p. 130 of 310)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21328)
  Hilbert Space Explorer  Hilbert Space Explorer
(21329-22851)
  Users' Mathboxes  Users' Mathboxes
(22852-30955)
 

Theorem List for Metamath Proof Explorer - 12901-13000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremvdwpc 12901* The predicate " The coloring 
F contains a polychromatic  M-tuple of AP's of length  K". A polychromatic 
M-tuple of AP's is a set of AP's with the same base point but different step lengths, such that each individual AP is monochromatic, but the AP's all have mutually distinct colors. (The common basepoint is not required to have the same color as any of the AP's.) (Contributed by Mario Carneiro, 18-Aug-2014.)
 |-  X  e.  _V   &    |-  ( ph  ->  K  e.  NN0 )   &    |-  ( ph  ->  F : X --> R )   &    |-  ( ph  ->  M  e.  NN )   &    |-  J  =  ( 1
 ... M )   =>    |-  ( ph  ->  (
 <. M ,  K >. PolyAP  F  <->  E. a  e.  NN  E. d  e.  ( NN  ^m  J ) ( A. i  e.  J  (
 ( a  +  (
 d `  i )
 ) (AP `  K ) ( d `  i ) )  C_  ( `' F " { ( F `  ( a  +  ( d `  i
 ) ) ) }
 )  /\  ( # `  ran  (  i  e.  J  |->  ( F `  ( a  +  ( d `  i ) ) ) ) )  =  M ) ) )
 
Theoremvdwlem1 12902* Lemma for vdw 12915. (Contributed by Mario Carneiro, 12-Sep-2014.)
 |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  K  e.  NN )   &    |-  ( ph  ->  W  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 W ) --> R )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  D : ( 1 ... M ) --> NN )   &    |-  ( ph  ->  A. i  e.  ( 1
 ... M ) ( ( A  +  ( D `  i ) ) (AP `  K )
 ( D `  i
 ) )  C_  ( `' F " { ( F `  ( A  +  ( D `  i ) ) ) } )
 )   &    |-  ( ph  ->  I  e.  ( 1 ... M ) )   &    |-  ( ph  ->  ( F `  A )  =  ( F `  ( A  +  ( D `  I ) ) ) )   =>    |-  ( ph  ->  ( K  +  1 ) MonoAP  F )
 
Theoremvdwlem2 12903* Lemma for vdw 12915. (Contributed by Mario Carneiro, 12-Sep-2014.)
 |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  K  e.  NN0 )   &    |-  ( ph  ->  W  e.  NN )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) --> R )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  ( W  +  N ) ) )   &    |-  G  =  ( x  e.  ( 1 ... W )  |->  ( F `  ( x  +  N ) ) )   =>    |-  ( ph  ->  ( K MonoAP  G  ->  K MonoAP  F ) )
 
Theoremvdwlem3 12904 Lemma for vdw 12915. (Contributed by Mario Carneiro, 13-Sep-2014.)
 |-  ( ph  ->  V  e.  NN )   &    |-  ( ph  ->  W  e.  NN )   &    |-  ( ph  ->  A  e.  (
 1 ... V ) )   &    |-  ( ph  ->  B  e.  ( 1 ... W ) )   =>    |-  ( ph  ->  ( B  +  ( W  x.  ( ( A  -  1 )  +  V ) ) )  e.  ( 1 ... ( W  x.  ( 2  x.  V ) ) ) )
 
Theoremvdwlem4 12905* Lemma for vdw 12915. (Contributed by Mario Carneiro, 12-Sep-2014.)
 |-  ( ph  ->  V  e.  NN )   &    |-  ( ph  ->  W  e.  NN )   &    |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  H : ( 1 ... ( W  x.  (
 2  x.  V ) ) ) --> R )   &    |-  F  =  ( x  e.  ( 1 ... V )  |->  ( y  e.  ( 1 ... W )  |->  ( H `  ( y  +  ( W  x.  ( ( x  -  1 )  +  V ) ) ) ) ) )   =>    |-  ( ph  ->  F : ( 1 ...
 V ) --> ( R 
 ^m  ( 1 ...
 W ) ) )
 
Theoremvdwlem5 12906* Lemma for vdw 12915. (Contributed by Mario Carneiro, 12-Sep-2014.)
 |-  ( ph  ->  V  e.  NN )   &    |-  ( ph  ->  W  e.  NN )   &    |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  H : ( 1 ... ( W  x.  (
 2  x.  V ) ) ) --> R )   &    |-  F  =  ( x  e.  ( 1 ... V )  |->  ( y  e.  ( 1 ... W )  |->  ( H `  ( y  +  ( W  x.  ( ( x  -  1 )  +  V ) ) ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  G : ( 1 ...
 W ) --> R )   &    |-  ( ph  ->  K  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  D  e.  NN )   &    |-  ( ph  ->  ( A (AP
 `  K ) D )  C_  ( `' F " { G }
 ) )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  E : ( 1 ... M ) --> NN )   &    |-  ( ph  ->  A. i  e.  ( 1
 ... M ) ( ( B  +  ( E `  i ) ) (AP `  K )
 ( E `  i
 ) )  C_  ( `' G " { ( G `  ( B  +  ( E `  i ) ) ) } )
 )   &    |-  J  =  ( i  e.  ( 1 ...
 M )  |->  ( G `
  ( B  +  ( E `  i ) ) ) )   &    |-  ( ph  ->  ( # `  ran  J )  =  M )   &    |-  T  =  ( B  +  ( W  x.  (
 ( A  +  ( V  -  D ) )  -  1 ) ) )   &    |-  P  =  ( j  e.  ( 1
 ... ( M  +  1 ) )  |->  ( if ( j  =  ( M  +  1 ) ,  0 ,  ( E `  j
 ) )  +  ( W  x.  D ) ) )   =>    |-  ( ph  ->  T  e.  NN )
 
Theoremvdwlem6 12907* Lemma for vdw 12915. (Contributed by Mario Carneiro, 13-Sep-2014.)
 |-  ( ph  ->  V  e.  NN )   &    |-  ( ph  ->  W  e.  NN )   &    |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  H : ( 1 ... ( W  x.  (
 2  x.  V ) ) ) --> R )   &    |-  F  =  ( x  e.  ( 1 ... V )  |->  ( y  e.  ( 1 ... W )  |->  ( H `  ( y  +  ( W  x.  ( ( x  -  1 )  +  V ) ) ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  G : ( 1 ...
 W ) --> R )   &    |-  ( ph  ->  K  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  D  e.  NN )   &    |-  ( ph  ->  ( A (AP
 `  K ) D )  C_  ( `' F " { G }
 ) )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  E : ( 1 ... M ) --> NN )   &    |-  ( ph  ->  A. i  e.  ( 1
 ... M ) ( ( B  +  ( E `  i ) ) (AP `  K )
 ( E `  i
 ) )  C_  ( `' G " { ( G `  ( B  +  ( E `  i ) ) ) } )
 )   &    |-  J  =  ( i  e.  ( 1 ...
 M )  |->  ( G `
  ( B  +  ( E `  i ) ) ) )   &    |-  ( ph  ->  ( # `  ran  J )  =  M )   &    |-  T  =  ( B  +  ( W  x.  (
 ( A  +  ( V  -  D ) )  -  1 ) ) )   &    |-  P  =  ( j  e.  ( 1
 ... ( M  +  1 ) )  |->  ( if ( j  =  ( M  +  1 ) ,  0 ,  ( E `  j
 ) )  +  ( W  x.  D ) ) )   =>    |-  ( ph  ->  ( <. ( M  +  1 ) ,  K >. PolyAP  H  \/  ( K  +  1 ) MonoAP  G ) )
 
Theoremvdwlem7 12908* Lemma for vdw 12915. (Contributed by Mario Carneiro, 12-Sep-2014.)
 |-  ( ph  ->  V  e.  NN )   &    |-  ( ph  ->  W  e.  NN )   &    |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  H : ( 1 ... ( W  x.  (
 2  x.  V ) ) ) --> R )   &    |-  F  =  ( x  e.  ( 1 ... V )  |->  ( y  e.  ( 1 ... W )  |->  ( H `  ( y  +  ( W  x.  ( ( x  -  1 )  +  V ) ) ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  G : ( 1 ...
 W ) --> R )   &    |-  ( ph  ->  K  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  D  e.  NN )   &    |-  ( ph  ->  ( A (AP
 `  K ) D )  C_  ( `' F " { G }
 ) )   =>    |-  ( ph  ->  ( <. M ,  K >. PolyAP  G  ->  ( <. ( M  +  1 ) ,  K >. PolyAP 
 H  \/  ( K  +  1 ) MonoAP  G ) ) )
 
Theoremvdwlem8 12909* Lemma for vdw 12915. (Contributed by Mario Carneiro, 18-Aug-2014.)
 |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  K  e.  ( ZZ>= `  2
 ) )   &    |-  ( ph  ->  W  e.  NN )   &    |-  ( ph  ->  F : ( 1 ... ( 2  x.  W ) ) --> R )   &    |-  C  e.  _V   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  D  e.  NN )   &    |-  ( ph  ->  ( A (AP `  K ) D )  C_  ( `' G " { C } ) )   &    |-  G  =  ( x  e.  (
 1 ... W )  |->  ( F `  ( x  +  W ) ) )   =>    |-  ( ph  ->  <. 1 ,  K >. PolyAP  F )
 
Theoremvdwlem9 12910* Lemma for vdw 12915. (Contributed by Mario Carneiro, 12-Sep-2014.)
 |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  K  e.  ( ZZ>= `  2
 ) )   &    |-  ( ph  ->  A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  (
 1 ... n ) ) K MonoAP  f )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  W  e.  NN )   &    |-  ( ph  ->  A. g  e.  ( R 
 ^m  ( 1 ...
 W ) ) (
 <. M ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g ) )   &    |-  ( ph  ->  V  e.  NN )   &    |-  ( ph  ->  A. f  e.  ( ( R  ^m  ( 1
 ... W ) ) 
 ^m  ( 1 ...
 V ) ) K MonoAP 
 f )   &    |-  ( ph  ->  H : ( 1 ... ( W  x.  (
 2  x.  V ) ) ) --> R )   &    |-  F  =  ( x  e.  ( 1 ... V )  |->  ( y  e.  ( 1 ... W )  |->  ( H `  ( y  +  ( W  x.  ( ( x  -  1 )  +  V ) ) ) ) ) )   =>    |-  ( ph  ->  (
 <. ( M  +  1 ) ,  K >. PolyAP  H  \/  ( K  +  1 ) MonoAP  H ) )
 
Theoremvdwlem10 12911* Lemma for vdw 12915. Set up secondary induction on  M. (Contributed by Mario Carneiro, 18-Aug-2014.)
 |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  K  e.  ( ZZ>= `  2
 ) )   &    |-  ( ph  ->  A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  (
 1 ... n ) ) K MonoAP  f )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
 1 ... n ) ) ( <. M ,  K >. PolyAP 
 f  \/  ( K  +  1 ) MonoAP  f
 ) )
 
Theoremvdwlem11 12912* Lemma for vdw 12915. (Contributed by Mario Carneiro, 18-Aug-2014.)
 |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  K  e.  ( ZZ>= `  2
 ) )   &    |-  ( ph  ->  A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  (
 1 ... n ) ) K MonoAP  f )   =>    |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) ( K  +  1 ) MonoAP  f
 )
 
Theoremvdwlem12 12913 Lemma for vdw 12915. 
K  =  2 base case of induction. (Contributed by Mario Carneiro, 18-Aug-2014.)
 |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  F : ( 1 ... ( ( # `  R )  +  1 )
 ) --> R )   &    |-  ( ph  ->  -.  2 MonoAP  F )   =>    |-  -.  ph
 
Theoremvdwlem13 12914* Lemma for vdw 12915. Main induction on  K;  K  =  0,  K  =  1 base cases. (Contributed by Mario Carneiro, 18-Aug-2014.)
 |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  K  e.  NN0 )   =>    |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
 1 ... n ) ) K MonoAP  f )
 
Theoremvdw 12915* Van der Waerden's theorem. For any finite coloring  R and integer  K, there is an  N such that every coloring function from  1 ... N to  R contains a monochromatic arithmetic progression (which written out in full means that there is a color  c and base, increment values  a ,  d such that all the numbers  a ,  a  +  d ,  ... ,  a  +  ( k  -  1 ) d lie in the preimage of  {
c }, i.e. they are all in  1 ... N and  f evaluated at each one yields  c). (Contributed by Mario Carneiro, 13-Sep-2014.)
 |-  ( ( R  e.  Fin  /\  K  e.  NN0 )  ->  E. n  e.  NN  A. f  e.  ( R 
 ^m  ( 1 ... n ) ) E. c  e.  R  E. a  e.  NN  E. d  e. 
 NN  A. m  e.  (
 0 ... ( K  -  1 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' f " { c } )
 )
 
Theoremvdwnnlem1 12916* Corollary of vdw 12915, and lemma for vdwnn 12919. If  F is a coloring of the integers, then there are arbitrarily long monochromatic APs in  F. (Contributed by Mario Carneiro, 13-Sep-2014.)
 |-  ( ( R  e.  Fin  /\  F : NN --> R  /\  K  e.  NN0 )  ->  E. c  e.  R  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... ( K  -  1
 ) ) ( a  +  ( m  x.  d ) )  e.  ( `' F " { c } )
 )
 
Theoremvdwnnlem2 12917* Lemma for vdwnn 12919. The set of all "bad"  k for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014.)
 |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  F : NN --> R )   &    |-  S  =  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
 k  -  1 ) ) ( a  +  ( m  x.  d
 ) )  e.  ( `' F " { c } ) }   =>    |-  ( ( ph  /\  B  e.  ( ZZ>= `  A ) )  ->  ( A  e.  S  ->  B  e.  S ) )
 
Theoremvdwnnlem3 12918* Lemma for vdwnn 12919. (Contributed by Mario Carneiro, 13-Sep-2014.)
 |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  F : NN --> R )   &    |-  S  =  { k  e.  NN  |  -.  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
 k  -  1 ) ) ( a  +  ( m  x.  d
 ) )  e.  ( `' F " { c } ) }   &    |-  ( ph  ->  A. c  e.  R  S  =/=  (/) )   =>    |- 
 -.  ph
 
Theoremvdwnn 12919* Van der Waerden's theorem, infinitary version. For any finite coloring  F of the natural numbers, there is a color  c that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014.)
 |-  ( ( R  e.  Fin  /\  F : NN --> R ) 
 ->  E. c  e.  R  A. k  e.  NN  E. a  e.  NN  E. d  e.  NN  A. m  e.  ( 0 ... (
 k  -  1 ) ) ( a  +  ( m  x.  d
 ) )  e.  ( `' F " { c } ) )
 
6.2.12  Ramsey's theorem
 
Syntaxcram 12920 Extend class notation with the Ramsey number function.
 class Ramsey
 
Theoremramtlecl 12921* The set  T of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.)
 |-  T  =  { n  e.  NN0  |  A. s
 ( n  <_  ( # `
  s )  ->  ph ) }   =>    |-  ( M  e.  T  ->  ( ZZ>= `  M )  C_  T )
 
Definitiondf-ram 12922* Define the Ramsey number function. The input is a number  m for the size of the edges of the hypergraph, and a tuple  r from the finite color set to lower bounds for each color. The Ramsey number  ( M Ramsey  R
) is the smallest number such that for any set  S with  ( M Ramsey  R
)  <_  # S and any coloring  F of the set of  M-element subsets of  S (with color set  dom  R), there is a color  c  e.  dom  R and a subset  x  C_  S such that  R ( c )  <_  # x and all the hyperedges of  x (that is, subsets of  x of size  M) have color  c. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |- Ramsey  =  ( m  e.  NN0 ,  r  e.  _V  |->  sup ( { n  e. 
 NN0  |  A. s ( n  <_  ( # `  s
 )  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
 )  =  m }
 ) E. c  e. 
 dom  r E. x  e.  ~P  s ( ( r `  c ) 
 <_  ( # `  x )  /\  A. y  e. 
 ~P  x ( ( # `  y )  =  m  ->  ( f `  y )  =  c ) ) ) } ,  RR* ,  `'  <  ) )
 
Theoremhashbcval 12923* Value of the "binomial set", the set of all  N-element subsets of  A. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   =>    |-  ( ( A  e.  V  /\  N  e.  NN0 )  ->  ( A C N )  =  { x  e.  ~P A  |  ( # `  x )  =  N }
 )
 
Theoremhashbccl 12924* The binomial set is a finite set. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   =>    |-  ( ( A  e.  Fin  /\  N  e.  NN0 )  ->  ( A C N )  e.  Fin )
 
Theoremhashbcss 12925* Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   =>    |-  ( ( A  e.  V  /\  B  C_  A  /\  N  e.  NN0 )  ->  ( B C N )  C_  ( A C N ) )
 
Theoremhashbc0 12926* The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   =>    |-  ( A  e.  V  ->  ( A C 0 )  =  { (/) } )
 
Theoremhashbc2 12927* The size of the binomial set is the binomial coefficient. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   =>    |-  ( ( A  e.  Fin  /\  N  e.  NN0 )  ->  ( # `  ( A C N ) )  =  ( ( # `  A )  _C  N ) )
 
Theorem0hashbc 12928* There are no subsets of the empty set with size greater than zero. (Contributed by Mario Carneiro, 22-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   =>    |-  ( N  e.  NN  ->  ( (/) C N )  =  (/) )
 
Theoremramval 12929* The value of the Ramsey number function. (Contributed by Mario Carneiro, 21-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   &    |-  T  =  { n  e.  NN0  |  A. s
 ( n  <_  ( # `
  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `  c ) 
 <_  ( # `  x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }   =>    |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  sup ( T ,  RR*
 ,  `'  <  )
 )
 
Theoremramcl2lem 12930* Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   &    |-  T  =  { n  e.  NN0  |  A. s
 ( n  <_  ( # `
  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `  c ) 
 <_  ( # `  x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }   =>    |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  if ( T  =  (/)
 ,  +oo ,  sup ( T ,  RR ,  `'  <  ) ) )
 
Theoremramtcl 12931* The Ramsey number has the Ramsey number property if any number does. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   &    |-  T  =  { n  e.  NN0  |  A. s
 ( n  <_  ( # `
  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `  c ) 
 <_  ( # `  x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }   =>    |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F )  e.  T  <->  T  =/=  (/) ) )
 
Theoremramtcl2 12932* The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   &    |-  T  =  { n  e.  NN0  |  A. s
 ( n  <_  ( # `
  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `  c ) 
 <_  ( # `  x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }   =>    |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F )  e.  NN0  <->  T  =/=  (/) ) )
 
Theoremramtub 12933* The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   &    |-  T  =  { n  e.  NN0  |  A. s
 ( n  <_  ( # `
  s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `  c ) 
 <_  ( # `  x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) }   =>    |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  A  e.  T )  ->  ( M Ramsey  F )  <_  A )
 
Theoremramub 12934* The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 22-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  R  e.  V )   &    |-  ( ph  ->  F : R --> NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ( ph  /\  ( N  <_  ( # `
  s )  /\  f : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e. 
 ~P  s ( ( F `  c ) 
 <_  ( # `  x )  /\  ( x C M )  C_  ( `' f " { c } ) ) )   =>    |-  ( ph  ->  ( M Ramsey  F )  <_  N )
 
Theoremramub2 12935* It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  R  e.  V )   &    |-  ( ph  ->  F : R --> NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ( ph  /\  ( ( # `  s
 )  =  N  /\  f : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e. 
 ~P  s ( ( F `  c ) 
 <_  ( # `  x )  /\  ( x C M )  C_  ( `' f " { c } ) ) )   =>    |-  ( ph  ->  ( M Ramsey  F )  <_  N )
 
Theoremrami 12936* The defining property of a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  R  e.  V )   &    |-  ( ph  ->  F : R --> NN0 )   &    |-  ( ph  ->  ( M Ramsey  F )  e.  NN0 )   &    |-  ( ph  ->  S  e.  W )   &    |-  ( ph  ->  ( M Ramsey  F )  <_  ( # `
  S ) )   &    |-  ( ph  ->  G :
 ( S C M )
 --> R )   =>    |-  ( ph  ->  E. c  e.  R  E. x  e. 
 ~P  S ( ( F `  c ) 
 <_  ( # `  x )  /\  ( x C M )  C_  ( `' G " { c } ) ) )
 
Theoremramcl2 12937 The Ramsey number is either a nonnegative integer or plus infinity. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  e.  ( NN0  u.  {  +oo } ) )
 
Theoremramxrcl 12938 The Ramsey number is an extended real number. (This theorem does not imply Ramsey's theorem, unlike ramcl 12950.) (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  e.  RR* )
 
Theoremramubcl 12939 If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( A  e.  NN0  /\  ( M Ramsey  F )  <_  A ) )  ->  ( M Ramsey  F )  e.  NN0 )
 
Theoremramlb 12940* Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  R  e.  V )   &    |-  ( ph  ->  F : R --> NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  G : ( ( 1
 ... N ) C M ) --> R )   &    |-  ( ( ph  /\  (
 c  e.  R  /\  x  C_  ( 1 ...
 N ) ) ) 
 ->  ( ( x C M )  C_  ( `' G " { c } )  ->  ( # `  x )  <  ( F `  c ) ) )   =>    |-  ( ph  ->  N  <  ( M Ramsey  F )
 )
 
Theorem0ram 12941* The Ramsey number when  M  =  0. (Contributed by Mario Carneiro, 22-Apr-2015.)
 |-  ( ( ( R  e.  V  /\  R  =/= 
 (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e. 
 ran  F  y  <_  x )  ->  ( 0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )
 
Theorem0ram2 12942 The Ramsey number when  M  =  0. (Contributed by Mario Carneiro, 22-Apr-2015.)
 |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R --> NN0 )  ->  (
 0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )
 
Theoremram0 12943 The Ramsey number when  R  =  (/). (Contributed by Mario Carneiro, 22-Apr-2015.)
 |-  ( M  e.  NN0  ->  ( M Ramsey  (/) )  =  M )
 
Theorem0ramcl 12944 Lemma for ramcl 12950: Existence of the Ramsey number when  M  =  0. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  ( ( R  e.  Fin  /\  F : R --> NN0 )  ->  ( 0 Ramsey  F )  e.  NN0 )
 
Theoremramz2 12945 The Ramsey number when  F has value zero for some color  C. (Contributed by Mario Carneiro, 22-Apr-2015.)
 |-  ( ( ( M  e.  NN  /\  R  e.  V  /\  F : R
 --> NN0 )  /\  ( C  e.  R  /\  ( F `  C )  =  0 ) ) 
 ->  ( M Ramsey  F )  =  0 )
 
Theoremramz 12946 The Ramsey number when  F is the zero function. (Contributed by Mario Carneiro, 22-Apr-2015.)
 |-  ( ( M  e.  NN0  /\  R  e.  V  /\  R  =/=  (/) )  ->  ( M Ramsey  ( R  X.  {
 0 } ) )  =  0 )
 
Theoremramub1lem1 12947* Lemma for ramub1 12949. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  F : R --> NN )   &    |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `  y
 ) ) ) ) )   &    |-  ( ph  ->  G : R --> NN0 )   &    |-  ( ph  ->  ( ( M  -  1 ) Ramsey  G )  e.  NN0 )   &    |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b )  =  i } )   &    |-  ( ph  ->  S  e.  Fin )   &    |-  ( ph  ->  ( # `
  S )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )
 )   &    |-  ( ph  ->  K : ( S C M ) --> R )   &    |-  ( ph  ->  X  e.  S )   &    |-  H  =  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |->  ( K `  ( u  u.  { X } ) ) )   &    |-  ( ph  ->  D  e.  R )   &    |-  ( ph  ->  W 
 C_  ( S  \  { X } ) )   &    |-  ( ph  ->  ( G `  D )  <_  ( # `
  W ) )   &    |-  ( ph  ->  ( W C ( M  -  1 ) )  C_  ( `' H " { D } ) )   &    |-  ( ph  ->  E  e.  R )   &    |-  ( ph  ->  V  C_  W )   &    |-  ( ph  ->  if ( E  =  D ,  ( ( F `  D )  -  1
 ) ,  ( F `
  E ) ) 
 <_  ( # `  V ) )   &    |-  ( ph  ->  ( V C M ) 
 C_  ( `' K " { E } )
 )   =>    |-  ( ph  ->  E. z  e.  ~P  S ( ( F `  E ) 
 <_  ( # `  z
 )  /\  ( z C M )  C_  ( `' K " { E } ) ) )
 
Theoremramub1lem2 12948* Lemma for ramub1 12949. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  F : R --> NN )   &    |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `  y
 ) ) ) ) )   &    |-  ( ph  ->  G : R --> NN0 )   &    |-  ( ph  ->  ( ( M  -  1 ) Ramsey  G )  e.  NN0 )   &    |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b )  =  i } )   &    |-  ( ph  ->  S  e.  Fin )   &    |-  ( ph  ->  ( # `
  S )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )
 )   &    |-  ( ph  ->  K : ( S C M ) --> R )   &    |-  ( ph  ->  X  e.  S )   &    |-  H  =  ( u  e.  ( ( S  \  { X } ) C ( M  -  1 ) )  |->  ( K `  ( u  u.  { X } ) ) )   =>    |-  ( ph  ->  E. c  e.  R  E. z  e. 
 ~P  S ( ( F `  c ) 
 <_  ( # `  z
 )  /\  ( z C M )  C_  ( `' K " { c } ) ) )
 
Theoremramub1 12949* Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  R  e.  Fin )   &    |-  ( ph  ->  F : R --> NN )   &    |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `  y
 ) ) ) ) )   &    |-  ( ph  ->  G : R --> NN0 )   &    |-  ( ph  ->  ( ( M  -  1 ) Ramsey  G )  e.  NN0 )   =>    |-  ( ph  ->  ( M Ramsey  F )  <_  (
 ( ( M  -  1 ) Ramsey  G )  +  1 ) )
 
Theoremramcl 12950 Ramsey's theorem: the Ramsey number is an integer for every finite coloring and set of upper bounds. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  ( ( M  e.  NN0  /\  R  e.  Fin  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  e.  NN0 )
 
Theoremramsey 12951* Ramsey's theorem with the definition Ramsey eliminated. If  M is an integer,  R is a specified finite set of colors, and  F : R --> NN0 is a set of lower bounds for each color, then there is an  n such that for every set  s of size greater than  n and every coloring  f of the set  ( s C M ) of all  M-element subsets of  s, there is a color  c and a subset  x  C_  s such that  x is larger than  F (
c ) and the  M-element subsets of  x are monochromatic with color  c. This is the hypergraph version of Ramsey's theorem; the version for simple graphs is the case  M  =  2. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
 )  =  i }
 )   =>    |-  ( ( M  e.  NN0  /\  R  e.  Fin  /\  F : R --> NN0 )  ->  E. n  e.  NN0  A. s ( n  <_  ( # `  s ) 
 ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s ( ( F `  c ) 
 <_  ( # `  x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) )
 
6.2.13  Decimal arithmetic (cont.)
 
Theoremdec2dvds 12952 Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  ( B  x.  2
 )  =  C   &    |-  D  =  ( C  +  1 )   =>    |- 
 -.  2  || ; A D
 
Theoremdec5dvds 12953 Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN   &    |-  B  <  5   =>    |- 
 -.  5  || ; A B
 
Theoremdec5dvds2 12954 Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN   &    |-  B  <  5   &    |-  ( 5  +  B )  =  C   =>    |-  -.  5  || ; A C
 
Theoremdec5nprm 12955 Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  A  e.  NN   =>    |-  -. ; A 5  e.  Prime
 
Theoremdec2nprm 12956 Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  A  e.  NN   &    |-  B  e.  NN0   &    |-  ( B  x.  2
 )  =  C   =>    |-  -. ; A C  e.  Prime
 
Theoremmodxai 12957 Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.)
 |-  N  e.  NN   &    |-  A  e.  NN   &    |-  B  e.  NN0   &    |-  D  e.  ZZ   &    |-  K  e.  NN0   &    |-  M  e.  NN0   &    |-  C  e.  NN0   &    |-  L  e.  NN0   &    |-  ( ( A ^ B )  mod  N )  =  ( K  mod  N )   &    |-  ( ( A ^ C )  mod  N )  =  ( L 
 mod  N )   &    |-  ( B  +  C )  =  E   &    |-  (
 ( D  x.  N )  +  M )  =  ( K  x.  L )   =>    |-  ( ( A ^ E )  mod  N )  =  ( M  mod  N )
 
Theoremmod2xi 12958 Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.)
 |-  N  e.  NN   &    |-  A  e.  NN   &    |-  B  e.  NN0   &    |-  D  e.  ZZ   &    |-  K  e.  NN0   &    |-  M  e.  NN0   &    |-  ( ( A ^ B )  mod  N )  =  ( K  mod  N )   &    |-  ( 2  x.  B )  =  E   &    |-  (
 ( D  x.  N )  +  M )  =  ( K  x.  K )   =>    |-  ( ( A ^ E )  mod  N )  =  ( M  mod  N )
 
Theoremmodxp1i 12959 Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.)
 |-  N  e.  NN   &    |-  A  e.  NN   &    |-  B  e.  NN0   &    |-  D  e.  ZZ   &    |-  K  e.  NN0   &    |-  M  e.  NN0   &    |-  ( ( A ^ B )  mod  N )  =  ( K  mod  N )   &    |-  ( B  +  1 )  =  E   &    |-  (
 ( D  x.  N )  +  M )  =  ( K  x.  A )   =>    |-  ( ( A ^ E )  mod  N )  =  ( M  mod  N )
 
Theoremmod2xnegi 12960 Version of mod2xi 12958 with a negaive mod value. (Contributed by Mario Carneiro, 21-Feb-2014.)
 |-  A  e.  NN   &    |-  B  e.  NN0   &    |-  D  e.  ZZ   &    |-  K  e.  NN   &    |-  M  e.  NN0   &    |-  L  e.  NN0   &    |-  ( ( A ^ B )  mod  N )  =  ( L  mod  N )   &    |-  ( 2  x.  B )  =  E   &    |-  ( L  +  K )  =  N   &    |-  ( ( D  x.  N )  +  M )  =  ( K  x.  K )   =>    |-  ( ( A ^ E )  mod  N )  =  ( M 
 mod  N )
 
Theoremmodsubi 12961 Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  N  e.  NN   &    |-  A  e.  NN   &    |-  B  e.  NN0   &    |-  M  e.  NN0   &    |-  ( A  mod  N )  =  ( K  mod  N )   &    |-  ( M  +  B )  =  K   =>    |-  (
 ( A  -  B )  mod  N )  =  ( M  mod  N )
 
Theoremgcdi 12962 Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.)
 |-  K  e.  NN0   &    |-  R  e.  NN0   &    |-  N  e.  NN0   &    |-  ( N  gcd  R )  =  G   &    |-  ( ( K  x.  N )  +  R )  =  M   =>    |-  ( M  gcd  N )  =  G
 
Theoremgcdmodi 12963 Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.)
 |-  K  e.  NN0   &    |-  R  e.  NN0   &    |-  N  e.  NN   &    |-  ( K  mod  N )  =  ( R  mod  N )   &    |-  ( N  gcd  R )  =  G   =>    |-  ( K  gcd  N )  =  G
 
Theoremdecexp2 12964 Calculate a power of two. (Contributed by Mario Carneiro, 19-Feb-2014.)
 |-  M  e.  NN0   &    |-  ( M  +  2 )  =  N   =>    |-  ( ( 4  x.  ( 2 ^ M ) )  +  0 )  =  (
 2 ^ N )
 
Theoremnumexp0 12965 Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   =>    |-  ( A ^ 0
 )  =  1
 
Theoremnumexp1 12966 Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   =>    |-  ( A ^ 1
 )  =  A
 
Theoremnumexpp1 12967 Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   &    |-  M  e.  NN0   &    |-  ( M  +  1 )  =  N   &    |-  (
 ( A ^ M )  x.  A )  =  C   =>    |-  ( A ^ N )  =  C
 
Theoremnumexp2x 12968 Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.)
 |-  A  e.  NN0   &    |-  M  e.  NN0   &    |-  ( 2  x.  M )  =  N   &    |-  ( A ^ M )  =  D   &    |-  ( D  x.  D )  =  C   =>    |-  ( A ^ N )  =  C
 
Theoremdecsplit0b 12969 Split a decimal number into two parts. Base case:  N  =  0. (Contributed by Mario Carneiro, 16-Jul-2015.)
 |-  A  e.  NN0   =>    |-  ( ( A  x.  ( 10 ^ 0 ) )  +  B )  =  ( A  +  B )
 
Theoremdecsplit0 12970 Split a decimal number into two parts. Base case:  N  =  0. (Contributed by Mario Carneiro, 16-Jul-2015.)
 |-  A  e.  NN0   =>    |-  ( ( A  x.  ( 10 ^ 0 ) )  +  0 )  =  A
 
Theoremdecsplit1 12971 Split a decimal number into two parts. Base case:  N  =  1. (Contributed by Mario Carneiro, 16-Jul-2015.)
 |-  A  e.  NN0   =>    |-  ( ( A  x.  ( 10 ^ 1 ) )  +  B )  = ; A B
 
Theoremdecsplit 12972 Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  D  e.  NN0   &    |-  M  e.  NN0   &    |-  ( M  +  1 )  =  N   &    |-  (
 ( A  x.  ( 10 ^ M ) )  +  B )  =  C   =>    |-  ( ( A  x.  ( 10 ^ N ) )  + ; B D )  = ; C D
 
Theoremkaratsuba 12973 The Karatsuba multiplication algorithm. If  X and 
Y are decomposed into two groups of digits of length  M (only the lower group is known to be this size but the algorithm is most efficient when the partition is chosen near the middle of the digit string), then  X Y can be written in three groups of digits, where each group needs only one multiplication. Thus we can halve both inputs with only three multiplications on the smaller operands, yielding an asymptotic improvement of n^(log2 3) instead of n^2 for the "naive" algorithm decmul1c 10050. (Contributed by Mario Carneiro, 16-Jul-2015.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   &    |-  D  e.  NN0   &    |-  S  e.  NN0   &    |-  M  e.  NN0   &    |-  ( A  x.  C )  =  R   &    |-  ( B  x.  D )  =  T   &    |-  (
 ( A  +  B )  x.  ( C  +  D ) )  =  ( ( R  +  S )  +  T )   &    |-  ( ( A  x.  ( 10 ^ M ) )  +  B )  =  X   &    |-  ( ( C  x.  ( 10 ^ M ) )  +  D )  =  Y   &    |-  (
 ( R  x.  ( 10 ^ M ) )  +  S )  =  W   &    |-  ( ( W  x.  ( 10 ^ M ) )  +  T )  =  Z   =>    |-  ( X  x.  Y )  =  Z
 
Theorem2exp4 12974 Two to the fourth power is 16. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  ( 2 ^ 4
 )  = ; 1 6
 
Theorem2exp6 12975 Two to the sixth power is 64. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  ( 2 ^ 6
 )  = ; 6 4
 
Theorem2exp8 12976 Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  ( 2 ^ 8
 )  = ;; 2 5 6
 
Theorem2exp16 12977 Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  ( 2 ^; 1 6 )  = ;;;; 6 5 5 3 6
 
Theorem3exp3 12978 Three to the third power is 27. (Contributed by Mario Carneiro, 20-Apr-2015.)
 |-  ( 3 ^ 3
 )  = ; 2 7
 
Theorem2expltfac 12979 The factorial grows faster than two to the power  N. (Contributed by Mario Carneiro, 15-Sep-2016.)
 |-  ( N  e.  ( ZZ>=
 `  4 )  ->  ( 2 ^ N )  <  ( ! `  N ) )
 
6.2.14  Specific prime numbers
 
Theorem4nprm 12980 4 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 18-Feb-2014.)
 |- 
 -.  4  e.  Prime
 
Theoremprmlem0 12981* Lemma for prmlem1 12983 and prmlem2 12995. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  ( ( -.  2  ||  M  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( ( x  e.  ( Prime  \  { 2 } )  /\  ( x ^ 2
 )  <_  N )  ->  -.  x  ||  N ) )   &    |-  ( K  e.  Prime  ->  -.  K  ||  N )   &    |-  ( K  +  2 )  =  M   =>    |-  ( ( -.  2  ||  K  /\  x  e.  ( ZZ>= `  K ) )  ->  ( ( x  e.  ( Prime  \  { 2 } )  /\  ( x ^ 2 )  <_  N )  ->  -.  x  ||  N ) )
 
Theoremprmlem1a 12982* A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  N  e.  NN   &    |-  1  <  N   &    |-  -.  2  ||  N   &    |- 
 -.  3  ||  N   &    |-  (
 ( -.  2  ||  5  /\  x  e.  ( ZZ>=
 `  5 ) ) 
 ->  ( ( x  e.  ( Prime  \  { 2 } )  /\  ( x ^ 2 )  <_  N )  ->  -.  x  ||  N ) )   =>    |-  N  e.  Prime
 
Theoremprmlem1 12983 A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  N  e.  NN   &    |-  1  <  N   &    |-  -.  2  ||  N   &    |- 
 -.  3  ||  N   &    |-  N  < ; 2
 5   =>    |-  N  e.  Prime
 
Theorem5prm 12984 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
 |-  5  e.  Prime
 
Theorem6nprm 12985 6 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |- 
 -.  6  e.  Prime
 
Theorem7prm 12986 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
 |-  7  e.  Prime
 
Theorem8nprm 12987 8 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |- 
 -.  8  e.  Prime
 
Theorem9nprm 12988 9 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |- 
 -.  9  e.  Prime
 
Theorem10nprm 12989 10 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |- 
 -.  10  e.  Prime
 
Theorem11prm 12990 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
 |- ; 1
 1  e.  Prime
 
Theorem13prm 12991 13 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
 |- ; 1
 3  e.  Prime
 
Theorem17prm 12992 17 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
 |- ; 1
 7  e.  Prime
 
Theorem19prm 12993 19 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
 |- ; 1
 9  e.  Prime
 
Theorem23prm 12994 23 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
 |- ; 2
 3  e.  Prime
 
Theoremprmlem2 12995 Our last proving session got as far as 25 because we started with the two "bootstrap" primes 2 and 3, and the next prime is 5, so knowing that 2 and 3 are prime and 4 is not allows us to cover the numbers less than  5 ^ 2  =  2 5. Additionally, nonprimes are "easy", so we can extend this range of known prime/nonprimes all the way until 29, which is the first prime larger than 25. Thus in this lemma we extend another blanket out to  2 9 ^ 2  =  8 4 1, from which we can prove even more primes. If we wanted, we could keep doing this, but the goal is Bertrand's postulate, and for that we only need a few large primes - we don't need to find them all, as we have been doing thus far. So after this blanket runs out we'll have to switch to another method (see 1259prm 13008).

As a side note, you can see the pattern of the primes in the indentation pattern of this lemma! (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)

 |-  N  e.  NN   &    |-  N  < ;; 8 4 1   &    |-  1  <  N   &    |-  -.  2  ||  N   &    |- 
 -.  3  ||  N   &    |-  -.  5  ||  N   &    |-  -.  7  ||  N   &    |- 
 -. ; 1 1  ||  N   &    |-  -. ; 1 3  ||  N   &    |-  -. ; 1 7 
 ||  N   &    |-  -. ; 1 9  ||  N   &    |-  -. ; 2 3 
 ||  N   =>    |-  N  e.  Prime
 
Theorem37prm 12996 37 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)
 |- ; 3
 7  e.  Prime
 
Theorem43prm 12997 43 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)
 |- ; 4
 3  e.  Prime
 
Theorem83prm 12998 83 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)
 |- ; 8
 3  e.  Prime
 
Theorem139prm 12999 139 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)
 |- ;; 1 3 9  e. 
 Prime
 
Theorem163prm 13000 163 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)
 |- ;; 1 6 3  e. 
 Prime
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-30955
  Copyright terms: Public domain < Previous  Next >