HomeHome Metamath Proof Explorer
Theorem List (p. 18 of 323)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21500)
  Hilbert Space Explorer  Hilbert Space Explorer
(21501-23023)
  Users' Mathboxes  Users' Mathboxes
(23024-32227)
 

Theorem List for Metamath Proof Explorer - 1701-1800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremax12dgen1 1701 Degenerate instance of ax-12 1868 where bundled variables  x and  y have a common substitution. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 13-Apr-2017.)
 |-  ( -.  x  =  x  ->  ( x  =  z  ->  A. x  x  =  z )
 )
 
Theoremax12dgen2 1702 Degenerate instance of ax-12 1868 where bundled variables  x and  z have a common substitution. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 13-Apr-2017.)
 |-  ( -.  x  =  y  ->  ( y  =  x  ->  A. x  y  =  x )
 )
 
Theoremax12dgen3 1703 Degenerate instance of ax-12 1868 where bundled variables  y and  z have a common substitution. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 13-Apr-2017.)
 |-  ( -.  x  =  y  ->  ( y  =  y  ->  A. x  y  =  y )
 )
 
Theoremax12dgen4 1704 Degenerate instance of ax-12 1868 where bundled variables  x,  y, and  z have a common substitution. Uses only Tarski's FOL axiom schemes . (Contributed by NM, 13-Apr-2017.)
 |-  ( -.  x  =  x  ->  ( x  =  x  ->  A. x  x  =  x )
 )
 
1.5  Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)

In this section we introduce four additional schemes ax-6 1705, ax-7 1710, ax-11 1717, and ax-12 1868 that are not part of Tarski's system but can be proved (outside of Metamath) as theorem schemes of Tarski's system. These are needed to give our system the property of "metalogical completeness," which means that we can prove (with Metamath) all possible schemes expressible in our language of wff metavariables ranging over object-language wffs and set metavariables ranging over object-language individual variables.

To show that these schemes are valid metatheorems of Tarski's system S2, above we proved from Tarski's system theorems ax6w 1693, ax7w 1694, ax12w 1700, and ax11w 1697, which show that any object-language instance of these schemes (emulated by having no wff metavariables and requiring all set metavariables to be mutually distinct) can be proved using only the schemes in Tarski's system S2.

An open problem is to show that these four additional schemes are metalogically independent from Tarski's. So far, independence of ax-11 1717 from all others has been shown, and independence of Tarski's ax-9 1637 from all others has been shown.

 
1.5.1  Axiom scheme ax-6 (Quantified Negation)
 
Axiomax-6 1705 Axiom of Quantified Negation. Axiom C5-2 of [Monk2] p. 113. This axiom scheme is logically redundant (see ax6w 1693) but is used as an auxiliary axiom to achieve metalogical completeness. (Contributed by NM, 5-Aug-1993.)
 |-  ( -.  A. x ph 
 ->  A. x  -.  A. x ph )
 
Theoremhbn1 1706  x is not free in  -.  A. x ph. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.)
 |-  ( -.  A. x ph 
 ->  A. x  -.  A. x ph )
 
Theoremhbe1 1707  x is not free in  E. x ph. (Contributed by NM, 5-Aug-1993.)
 |-  ( E. x ph  ->  A. x E. x ph )
 
Theoremnfe1 1708  x is not free in  E. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x E. x ph
 
Theoremmodal-5 1709 The analog in our "pure" predicate calculus of axiom 5 of modal logic S5. (Contributed by NM, 5-Oct-2005.)
 |-  ( -.  A. x  -.  ph  ->  A. x  -.  A. x  -.  ph )
 
1.5.2  Axiom scheme ax-7 (Quantifier Commutation)
 
Axiomax-7 1710 Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. One of the 4 axioms of pure predicate calculus. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. This axiom scheme is logically redundant (see ax7w 1694) but is used as an auxiliary axiom to achieve metalogical completeness. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x A. y ph  ->  A. y A. x ph )
 
Theorema7s 1711 Swap quantifiers in an antecedent. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x A. y ph  ->  ps )   =>    |-  ( A. y A. x ph  ->  ps )
 
Theoremhbal 1712 If  x is not free in  ph, it is not free in  A. y ph. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( A. y ph  ->  A. x A. y ph )
 
Theoremalcom 1713 Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x A. y ph  <->  A. y A. x ph )
 
Theoremalrot3 1714 Theorem *11.21 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
 |-  ( A. x A. y A. z ph  <->  A. y A. z A. x ph )
 
Theoremalrot4 1715 Rotate 4 universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
 |-  ( A. x A. y A. z A. w ph  <->  A. z A. w A. x A. y ph )
 
Theoremhbald 1716 Deduction form of bound-variable hypothesis builder hbal 1712. (Contributed by NM, 2-Jan-2002.)
 |-  ( ph  ->  A. y ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   =>    |-  ( ph  ->  ( A. y ps  ->  A. x A. y ps ) )
 
1.5.3  Axiom scheme ax-11 (Substitution)
 
Axiomax-11 1717 Axiom of Substitution. One of the 5 equality axioms of predicate calculus. The final consequent  A. x ( x  =  y  ->  ph ) is a way of expressing " y substituted for  x in wff  ph " (cf. sb6 2040). It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases.

The original version of this axiom was ax-11o 2082 ("o" for "old") and was replaced with this shorter ax-11 1717 in Jan. 2007. The old axiom is proved from this one as theorem ax11o 1936. Conversely, this axiom is proved from ax-11o 2082 as theorem ax11 2096.

Juha Arpiainen proved the metalogical independence of this axiom (in the form of the older axiom ax-11o 2082) from the others on 19-Jan-2006. See item 9a at http://us.metamath.org/award2003.html.

See ax11v 2038 and ax11v2 1934 for other equivalents of this axiom that (unlike this axiom) have distinct variable restrictions.

This axiom scheme is logically redundant (see ax11w 1697) but is used as an auxiliary axiom to achieve metalogical completeness. (Contributed by NM, 22-Jan-2007.)

 |-  ( x  =  y 
 ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
 ) )
 
Theoremsp 1718 Specialization. A universally quantified wff implies the wff without a quantifier Axiom scheme B5 of [Tarski] p. 67 (under his system S2, defined in the last paragraph on p. 77). Also appears as Axiom scheme C5' in [Megill] p. 448 (p. 16 of the preprint).

For the axiom of specialization presented in many logic textbooks, see theorem stdpc4 1966.

This theorem shows that our obsolete axiom ax-4 2076 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114.

It appears that this scheme cannot be derived directly from Tarski's axioms without auxilliary axiom scheme ax-11 1717. It is thought the best we can do using only Tarski's axioms is spw 1662. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.)

 |-  ( A. x ph  -> 
 ph )
 
Theoremax5o 1719 Show that the original axiom ax-5o 2077 can be derived from ax-5 1546 and others. See ax5 2087 for the rederivation of ax-5 1546 from ax-5o 2077.

Part of the proof is based on the proof of Lemma 22 of [Monk2] p. 114. (Contributed by NM, 21-May-2008.) (Proof modification is discouraged.)

 |-  ( A. x (
 A. x ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
 
Theorem19.8a 1720 If a wff is true, it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  E. x ph )
 
Theoremhba1 1721  x is not free in  A. x ph. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x ph  ->  A. x A. x ph )
 
Theoremhbn 1722 If  x is not free in  ph, it is not free in  -.  ph. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( -.  ph  ->  A. x  -.  ph )
 
Theoremhbimd 1723 Deduction form of bound-variable hypothesis builder hbim 1727. (Contributed by NM, 1-Jan-2002.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   &    |-  ( ph  ->  ( ch  ->  A. x ch ) )   =>    |-  ( ph  ->  (
 ( ps  ->  ch )  ->  A. x ( ps 
 ->  ch ) ) )
 
Theoremspimeh 1724* Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.)
 |-  ( ph  ->  A. x ph )   &    |-  ( x  =  z  ->  ( ph  ->  ps ) )   =>    |-  ( ph  ->  E. x ps )
 
Theoremax6o 1725 Show that the original axiom ax-6o 2078 can be derived from ax-6 1705 and others. See ax6 2088 for the rederivation of ax-6 1705 from ax-6o 2078.

Normally, ax6o 1725 should be used rather than ax-6o 2078, except by theorems specifically studying the latter's properties. (Contributed by NM, 21-May-2008.)

 |-  ( -.  A. x  -.  A. x ph  ->  ph )
 
Theoremhbnt 1726 Closed theorem version of bound-variable hypothesis builder hbn 1722. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x (
 ph  ->  A. x ph )  ->  ( -.  ph  ->  A. x  -.  ph )
 )
 
Theoremhbim 1727 If  x is not free in  ph and  ps, it is not free in  ( ph  ->  ps ). (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 3-Mar-2008.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( ( ph  ->  ps )  ->  A. x ( ph  ->  ps )
 )
 
Theorem19.9ht 1728 A closed version of 19.9 1785. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x (
 ph  ->  A. x ph )  ->  ( E. x ph  -> 
 ph ) )
 
Theorem19.9h 1729 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( E. x ph  <->  ph )
 
Theorem19.23h 1730 Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |-  ( ps  ->  A. x ps )   =>    |-  ( A. x (
 ph  ->  ps )  <->  ( E. x ph 
 ->  ps ) )
 
Theoremexlimih 1731 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ps  ->  A. x ps )   &    |-  ( ph  ->  ps )   =>    |-  ( E. x ph  ->  ps )
 
Theoremequsalhw 1732* Weaker version of equsalh 1903 (requiring distinct variables) without using ax-12 1868. (Contributed by NM, 29-Nov-2015.)
 |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( A. x ( x  =  y  ->  ph )  <->  ps )
 
Theorem19.21h 1733 Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as " x is not free in  ph." (Contributed by NM, 1-Aug-2017.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( A. x (
 ph  ->  ps )  <->  ( ph  ->  A. x ps ) )
 
Theoremhbim1 1734 A closed form of hbim 1727. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   =>    |-  ( ( ph  ->  ps )  ->  A. x (
 ph  ->  ps ) )
 
Theoremhbex 1735 If  x is not free in  ph, it is not free in  E. y ph. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( E. y ph  ->  A. x E. y ph )
 
Theorem19.12 1736 Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! But sometimes the converse does hold, as in 19.12vv 1841 and r19.12sn 3698. (Contributed by NM, 5-Aug-1993.)
 |-  ( E. x A. y ph  ->  A. y E. x ph )
 
Theoremdvelimhw 1737* Proof of dvelimh 1906 without using ax-12 1868 but with additional distinct variable conditions. (Contributed by Andrew Salmon, 21-Jul-2011.) (Revised by NM, 1-Aug-2017.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. z ps )   &    |-  (
 z  =  y  ->  ( ph  <->  ps ) )   &    |-  ( -.  A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
 )   =>    |-  ( -.  A. x  x  =  y  ->  ( ps  ->  A. x ps ) )
 
Theoremhban 1738 If  x is not free in  ph and  ps, it is not free in  ( ph  /\  ps ). (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( ( ph  /\ 
 ps )  ->  A. x ( ph  /\  ps )
 )
 
Theoremcbv3hv 1739* Lemma for ax10 1886. Similar to cbv3h 1925. Requires distinct variables but avoids ax-12 1868. (Contributed by NM, 25-Jul-2015.)
 |-  ( ph  ->  A. y ph )   &    |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  A. y ps )
 
Theoremspi 1740 Inference rule reversing generalization. (Contributed by NM, 5-Aug-1993.)
 |- 
 A. x ph   =>    |-  ph
 
Theoremsps 1741 Generalization of antecedent. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x ph  ->  ps )
 
Theoremspsd 1742 Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  ->  ch ) )
 
Theoremnfr 1743 Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.)
 |-  ( F/ x ph  ->  ( ph  ->  A. x ph ) )
 
Theoremnfri 1744 Consequence of the definition of not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   =>    |-  ( ph  ->  A. x ph )
 
Theoremnfrd 1745 Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  ( ps  ->  A. x ps )
 )
 
Theoremalimd 1746 Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x ps  ->  A. x ch ) )
 
Theoremalrimi 1747 Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ps )   =>    |-  ( ph  ->  A. x ps )
 
Theoremnfd 1748 Deduce that  x is not free in  ph in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   =>    |-  ( ph  ->  F/ x ps )
 
Theoremnfdh 1749 Deduce that  x is not free in  ph in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   =>    |-  ( ph  ->  F/ x ps )
 
Theoremalrimdd 1750 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  A. x ch )
 )
 
Theoremalrimd 1751 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  F/ x ps   &    |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  A. x ch )
 )
 
Theoremeximd 1752 Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( E. x ps  ->  E. x ch ) )
 
Theoremnexd 1753 Deduction for generalization rule for negated wff. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  -. 
 ps )   =>    |-  ( ph  ->  -.  E. x ps )
 
Theoremalbid 1754 Formula-building rule for universal quantifier (deduction rule). (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. x ch )
 )
 
Theoremexbid 1755 Formula-building rule for existential quantifier (deduction rule). (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x ps  <->  E. x ch )
 )
 
Theoremnfbidf 1756 An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( F/ x ps  <->  F/ x ch )
 )
 
Theorema6e 1757 Abbreviated version of ax6o 1725. (Contributed by NM, 5-Aug-1993.)
 |-  ( E. x A. x ph  ->  ph )
 
Theoremnfa1 1758  x is not free in  A. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x A. x ph
 
Theoremnfnf1 1759  x is not free in  F/ x ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x F/ x ph
 
Theorema5i 1760 Inference version of ax5o 1719. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x ph  ->  ps )   =>    |-  ( A. x ph  ->  A. x ps )
 
Theoremhb3an 1761 If  x is not free in  ph,  ps, and  ch, it is not free in  ( ph  /\  ps  /\  ch ). (Contributed by NM, 14-Sep-2003.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. x ps )   &    |-  ( ch  ->  A. x ch )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  A. x (
 ph  /\  ps  /\  ch ) )
 
Theoremnfnd 1762 If  x is not free in  ph, it is not free in  -.  ph. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x  -.  ps )
 
Theoremnfimd 1763 If  x is not free in  ph and  ps, it is not free in  ( ph  ->  ps ). (Contributed by Mario Carneiro, 24-Sep-2016.)
 |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  F/ x ( ps  ->  ch ) )
 
Theoremnfbid 1764 If  x is not free in  ph and  ps, it is not free in  ( ph  ->  ps ). (Contributed by Mario Carneiro, 24-Sep-2016.)
 |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  F/ x ( ps  <->  ch ) )
 
Theoremnfand 1765 If  x is not free in  ph and  ps, it is not free in  ( ph  /\  ps ). (Contributed by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  F/ x ( ps  /\  ch ) )
 
Theoremnf3and 1766 Deduction form of bound-variable hypothesis builder nf3an 1776. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.)
 |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  F/ x th )   =>    |-  ( ph  ->  F/ x ( ps  /\  ch  /\  th ) )
 
Theoremnfn 1767 If  x is not free in  ph, it is not free in  -.  ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   =>    |- 
 F/ x  -.  ph
 
Theoremnfal 1768 If  x is not free in  ph, it is not free in  A. y ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   =>    |- 
 F/ x A. y ph
 
Theoremnfex 1769 If  x is not free in  ph, it is not free in  E. y ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   =>    |- 
 F/ x E. y ph
 
Theoremnfnf 1770 If  x is not free in  ph, it is not free in  F/ y ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   =>    |- 
 F/ x F/ y ph
 
Theoremnfim 1771 If  x is not free in  ph and  ps, it is not free in  ( ph  ->  ps ). (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   &    |-  F/ x ps   =>    |-  F/ x ( ph  ->  ps )
 
Theoremnfor 1772 If  x is not free in  ph and  ps, it is not free in  ( ph  \/  ps ). (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   &    |-  F/ x ps   =>    |-  F/ x ( ph  \/  ps )
 
Theoremnfan 1773 If  x is not free in  ph and  ps, it is not free in  ( ph  /\  ps ). (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   &    |-  F/ x ps   =>    |-  F/ x ( ph  /\  ps )
 
Theoremnfbi 1774 If  x is not free in  ph and  ps, it is not free in  ( ph  <->  ps ). (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   &    |-  F/ x ps   =>    |-  F/ x ( ph  <->  ps )
 
Theoremnf3or 1775 If  x is not free in  ph,  ps, and  ch, it is not free in  ( ph  \/  ps  \/  ch ). (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   &    |-  F/ x ps   &    |-  F/ x ch   =>    |- 
 F/ x ( ph  \/  ps  \/  ch )
 
Theoremnf3an 1776 If  x is not free in  ph,  ps, and  ch, it is not free in  ( ph  /\  ps  /\  ch ). (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   &    |-  F/ x ps   &    |-  F/ x ch   =>    |- 
 F/ x ( ph  /\ 
 ps  /\  ch )
 
Theoremnfald 1777 If  x is not free in  ph, it is not free in  A. y ph. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x A. y ps )
 
Theoremnfexd 1778 If  x is not free in  ph, it is not free in  E. y ph. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E. y ps )
 
Theoremnfa2 1779 Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x A. y A. x ph
 
Theoremnfia1 1780 Lemma 23 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ( A. x ph  ->  A. x ps )
 
Theoremmodal-b 1781 The analog in our "pure" predicate calculus of the Brouwer axiom (B) of modal logic S5. (Contributed by NM, 5-Oct-2005.)
 |-  ( ph  ->  A. x  -.  A. x  -.  ph )
 
Theorem19.2g 1782 Theorem 19.2 of [Margaris] p. 89, generalized to use two set variables. (Contributed by O'Cat, 31-Mar-2008.)
 |-  ( A. x ph  ->  E. y ph )
 
Theorem19.3 1783 A wff may be quantified with a variable not free in it. Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   =>    |-  ( A. x ph  <->  ph )
 
Theorem19.9t 1784 A closed version of 19.9 1785. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |-  ( F/ x ph  ->  ( E. x ph  <->  ph ) )
 
Theorem19.9 1785 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   =>    |-  ( E. x ph  <->  ph )
 
Theorem19.9d 1786 A deduction version of one direction of 19.9 1785. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |-  ( ps  ->  F/ x ph )   =>    |-  ( ps  ->  ( E. x ph  ->  ph )
 )
 
Theoremexcomim 1787 One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |-  ( E. x E. y ph  ->  E. y E. x ph )
 
Theoremexcom 1788 Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
 |-  ( E. x E. y ph  <->  E. y E. x ph )
 
Theorem19.16 1789 Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |- 
 F/ x ph   =>    |-  ( A. x (
 ph 
 <->  ps )  ->  ( ph 
 <-> 
 A. x ps )
 )
 
Theorem19.17 1790 Theorem 19.17 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |- 
 F/ x ps   =>    |-  ( A. x ( ph  <->  ps )  ->  ( A. x ph  <->  ps ) )
 
Theorem19.19 1791 Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |- 
 F/ x ph   =>    |-  ( A. x (
 ph 
 <->  ps )  ->  ( ph 
 <-> 
 E. x ps )
 )
 
Theorem19.21t 1792 Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |-  ( F/ x ph  ->  ( A. x (
 ph  ->  ps )  <->  ( ph  ->  A. x ps ) ) )
 
Theorem19.21 1793 Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as " x is not free in  ph." (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ph   =>    |-  ( A. x (
 ph  ->  ps )  <->  ( ph  ->  A. x ps ) )
 
Theorem19.21-2 1794 Theorem 19.21 of [Margaris] p. 90 but with 2 quantifiers. (Contributed by NM, 4-Feb-2005.)
 |- 
 F/ x ph   &    |-  F/ y ph   =>    |-  ( A. x A. y (
 ph  ->  ps )  <->  ( ph  ->  A. x A. y ps ) )
 
Theoremstdpc5 1795 An axiom scheme of standard predicate calculus that emulates Axiom 5 of [Mendelson] p. 69. The hypothesis  F/ x ph can be thought of as emulating " x is not free in  ph." With this definition, the meaning of "not free" is less restrictive than the usual textbook definition; for example  x would not (for us) be free in  x  =  x by nfequid 1647. This theorem scheme can be proved as a metatheorem of Mendelson's axiom system, even though it is slightly stronger than his Axiom 5. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |- 
 F/ x ph   =>    |-  ( A. x (
 ph  ->  ps )  ->  ( ph  ->  A. x ps )
 )
 
Theorem19.21bi 1796 Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ps )   =>    |-  ( ph  ->  ps )
 
Theorem19.21bbi 1797 Inference removing double quantifier. (Contributed by NM, 20-Apr-1994.)
 |-  ( ph  ->  A. x A. y ps )   =>    |-  ( ph  ->  ps )
 
Theorem19.23t 1798 Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.)
 |-  ( F/ x ps  ->  ( A. x (
 ph  ->  ps )  <->  ( E. x ph 
 ->  ps ) ) )
 
Theorem19.23 1799 Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
 |- 
 F/ x ps   =>    |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
 
Theoremnf2 1800 An alternative definition of df-nf 1534, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.)
 |-  ( F/ x ph  <->  ( E. x ph  ->  A. x ph ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32227
  Copyright terms: Public domain < Previous  Next >