HomeHome Metamath Proof Explorer
Theorem List (p. 26 of 328)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21514)
  Hilbert Space Explorer  Hilbert Space Explorer
(21515-23037)
  Users' Mathboxes  Users' Mathboxes
(23038-32776)
 

Theorem List for Metamath Proof Explorer - 2501-2600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnecon1ai 2501 Contrapositive inference for inequality. (Contributed by NM, 12-Feb-2007.)
 |-  ( -.  ph  ->  A  =  B )   =>    |-  ( A  =/=  B 
 ->  ph )
 
Theoremnecon1bi 2502 Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( A  =/=  B  -> 
 ph )   =>    |-  ( -.  ph  ->  A  =  B )
 
Theoremnecon1i 2503 Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.)
 |-  ( A  =/=  B  ->  C  =  D )   =>    |-  ( C  =/=  D  ->  A  =  B )
 
Theoremnecon2ai 2504 Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( A  =  B  ->  -.  ph )   =>    |-  ( ph  ->  A  =/=  B )
 
Theoremnecon2bi 2505 Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
 |-  ( ph  ->  A  =/=  B )   =>    |-  ( A  =  B  ->  -.  ph )
 
Theoremnecon2i 2506 Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.)
 |-  ( A  =  B  ->  C  =/=  D )   =>    |-  ( C  =  D  ->  A  =/=  B )
 
Theoremnecon2ad 2507 Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  ( A  =  B  ->  -. 
 ps ) )   =>    |-  ( ph  ->  ( ps  ->  A  =/=  B ) )
 
Theoremnecon2bd 2508 Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
 |-  ( ph  ->  ( ps  ->  A  =/=  B ) )   =>    |-  ( ph  ->  ( A  =  B  ->  -. 
 ps ) )
 
Theoremnecon2d 2509 Contrapositive inference for inequality. (Contributed by NM, 28-Dec-2008.)
 |-  ( ph  ->  ( A  =  B  ->  C  =/=  D ) )   =>    |-  ( ph  ->  ( C  =  D  ->  A  =/=  B ) )
 
Theoremnecon1abii 2510 Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.)
 |-  ( -.  ph  <->  A  =  B )   =>    |-  ( A  =/=  B  <->  ph )
 
Theoremnecon1bbii 2511 Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.)
 |-  ( A  =/=  B  <->  ph )   =>    |-  ( -.  ph  <->  A  =  B )
 
Theoremnecon1abid 2512 Contrapositive deduction for inequality. (Contributed by NM, 21-Aug-2007.)
 |-  ( ph  ->  ( -.  ps  <->  A  =  B ) )   =>    |-  ( ph  ->  ( A  =/=  B  <->  ps ) )
 
Theoremnecon1bbid 2513 Contrapositive inference for inequality. (Contributed by NM, 31-Jan-2008.)
 |-  ( ph  ->  ( A  =/=  B  <->  ps ) )   =>    |-  ( ph  ->  ( -.  ps  <->  A  =  B ) )
 
Theoremnecon2abii 2514 Contrapositive inference for inequality. (Contributed by NM, 2-Mar-2007.)
 |-  ( A  =  B  <->  -.  ph )   =>    |-  ( ph  <->  A  =/=  B )
 
Theoremnecon2bbii 2515 Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
 |-  ( ph  <->  A  =/=  B )   =>    |-  ( A  =  B  <->  -.  ph )
 
Theoremnecon2abid 2516 Contrapositive deduction for inequality. (Contributed by NM, 18-Jul-2007.)
 |-  ( ph  ->  ( A  =  B  <->  -.  ps ) )   =>    |-  ( ph  ->  ( ps  <->  A  =/=  B ) )
 
Theoremnecon2bbid 2517 Contrapositive deduction for inequality. (Contributed by NM, 13-Apr-2007.)
 |-  ( ph  ->  ( ps 
 <->  A  =/=  B ) )   =>    |-  ( ph  ->  ( A  =  B  <->  -.  ps ) )
 
Theoremnecon4ai 2518 Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( A  =/=  B  ->  -.  ph )   =>    |-  ( ph  ->  A  =  B )
 
Theoremnecon4i 2519 Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( A  =/=  B  ->  C  =/=  D )   =>    |-  ( C  =  D  ->  A  =  B )
 
Theoremnecon4ad 2520 Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  ( A  =/=  B  ->  -.  ps ) )   =>    |-  ( ph  ->  ( ps  ->  A  =  B ) )
 
Theoremnecon4bd 2521 Contrapositive inference for inequality. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  ( -.  ps  ->  A  =/=  B ) )   =>    |-  ( ph  ->  ( A  =  B  ->  ps ) )
 
Theoremnecon4d 2522 Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  ( A  =/=  B  ->  C  =/=  D ) )   =>    |-  ( ph  ->  ( C  =  D  ->  A  =  B ) )
 
Theoremnecon4abid 2523 Contrapositive law deduction for inequality. (Contributed by NM, 11-Jan-2008.)
 |-  ( ph  ->  ( A  =/=  B  <->  -.  ps ) )   =>    |-  ( ph  ->  ( A  =  B  <->  ps ) )
 
Theoremnecon4bbid 2524 Contrapositive law deduction for inequality. (Contributed by NM, 9-May-2012.)
 |-  ( ph  ->  ( -.  ps  <->  A  =/=  B ) )   =>    |-  ( ph  ->  ( ps 
 <->  A  =  B ) )
 
Theoremnecon4bid 2525 Contrapositive law deduction for inequality. (Contributed by NM, 29-Jun-2007.)
 |-  ( ph  ->  ( A  =/=  B  <->  C  =/=  D ) )   =>    |-  ( ph  ->  ( A  =  B  <->  C  =  D ) )
 
Theoremnecon1ad 2526 Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007.)
 |-  ( ph  ->  ( -.  ps  ->  A  =  B ) )   =>    |-  ( ph  ->  ( A  =/=  B  ->  ps ) )
 
Theoremnecon1bd 2527 Contrapositive deduction for inequality. (Contributed by NM, 21-Mar-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  ( A  =/=  B  ->  ps )
 )   =>    |-  ( ph  ->  ( -.  ps  ->  A  =  B ) )
 
Theoremnecon1d 2528 Contrapositive law deduction for inequality. (Contributed by NM, 28-Dec-2008.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  ( A  =/=  B  ->  C  =  D ) )   =>    |-  ( ph  ->  ( C  =/=  D  ->  A  =  B ) )
 
Theoremneneqad 2529 If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2475. One-way deduction form of df-ne 2461. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  -.  A  =  B )   =>    |-  ( ph  ->  A  =/=  B )
 
Theoremnebi 2530 Contraposition law for inequality. (Contributed by NM, 28-Dec-2008.)
 |-  ( ( A  =  B 
 <->  C  =  D )  <-> 
 ( A  =/=  B  <->  C  =/=  D ) )
 
Theorempm13.18 2531 Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
 |-  ( ( A  =  B  /\  A  =/=  C )  ->  B  =/=  C )
 
Theorempm13.181 2532 Theorem *13.181 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
 |-  ( ( A  =  B  /\  B  =/=  C )  ->  A  =/=  C )
 
Theorempm2.21ddne 2533 A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  ps )
 
Theorempm2.61ne 2534 Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( A  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 ( ph  /\  A  =/=  B )  ->  ps )   &    |-  ( ph  ->  ch )   =>    |-  ( ph  ->  ps )
 
Theorempm2.61ine 2535 Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( A  =  B  -> 
 ph )   &    |-  ( A  =/=  B 
 ->  ph )   =>    |-  ph
 
Theorempm2.61dne 2536 Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  ( A  =  B  ->  ps ) )   &    |-  ( ph  ->  ( A  =/=  B  ->  ps ) )   =>    |-  ( ph  ->  ps )
 
Theorempm2.61dane 2537 Deduction eliminating an inequality in an antecedent. (Contributed by NM, 30-Nov-2011.)
 |-  ( ( ph  /\  A  =  B )  ->  ps )   &    |-  (
 ( ph  /\  A  =/=  B )  ->  ps )   =>    |-  ( ph  ->  ps )
 
Theorempm2.61da2ne 2538 Deduction eliminating two inequalities in an antecedent. (Contributed by NM, 29-May-2013.)
 |-  ( ( ph  /\  A  =  B )  ->  ps )   &    |-  (
 ( ph  /\  C  =  D )  ->  ps )   &    |-  (
 ( ph  /\  ( A  =/=  B  /\  C  =/=  D ) )  ->  ps )   =>    |-  ( ph  ->  ps )
 
Theorempm2.61da3ne 2539 Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013.)
 |-  ( ( ph  /\  A  =  B )  ->  ps )   &    |-  (
 ( ph  /\  C  =  D )  ->  ps )   &    |-  (
 ( ph  /\  E  =  F )  ->  ps )   &    |-  (
 ( ph  /\  ( A  =/=  B  /\  C  =/=  D  /\  E  =/=  F ) )  ->  ps )   =>    |-  ( ph  ->  ps )
 
Theoremnecom 2540 Commutation of inequality. (Contributed by NM, 14-May-1999.)
 |-  ( A  =/=  B  <->  B  =/=  A )
 
Theoremnecomi 2541 Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.)
 |-  A  =/=  B   =>    |-  B  =/=  A
 
Theoremnecomd 2542 Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
 |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  B  =/=  A )
 
Theoremneor 2543 Logical OR with an equality. (Contributed by NM, 29-Apr-2007.)
 |-  ( ( A  =  B  \/  ps )  <->  ( A  =/=  B 
 ->  ps ) )
 
Theoremneanior 2544 A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.)
 |-  ( ( A  =/=  B 
 /\  C  =/=  D ) 
 <->  -.  ( A  =  B  \/  C  =  D ) )
 
Theoremne3anior 2545 A De Morgan's law for inequality. (Contributed by NM, 30-Sep-2013.)
 |-  ( ( A  =/=  B 
 /\  C  =/=  D  /\  E  =/=  F )  <->  -.  ( A  =  B  \/  C  =  D  \/  E  =  F )
 )
 
Theoremneorian 2546 A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.)
 |-  ( ( A  =/=  B  \/  C  =/=  D ) 
 <->  -.  ( A  =  B  /\  C  =  D ) )
 
Theoremnemtbir 2547 An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
 |-  A  =/=  B   &    |-  ( ph 
 <->  A  =  B )   =>    |-  -.  ph
 
Theoremnelne1 2548 Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.)
 |-  ( ( A  e.  B  /\  -.  A  e.  C )  ->  B  =/=  C )
 
Theoremnelne2 2549 Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.)
 |-  ( ( A  e.  C  /\  -.  B  e.  C )  ->  A  =/=  B )
 
Theoremneleq1 2550 Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
 |-  ( A  =  B  ->  ( A  e/  C  <->  B 
 e/  C ) )
 
Theoremneleq2 2551 Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
 |-  ( A  =  B  ->  ( C  e/  A  <->  C 
 e/  B ) )
 
Theoremnfne 2552 Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  =/=  B
 
Theoremnfnel 2553 Bound-variable hypothesis builder for inequality. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  e/  B
 
Theoremnfned 2554 Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A  =/=  B )
 
Theoremnfneld 2555 Bound-variable hypothesis builder for inequality. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A  e/  B )
 
2.1.5  Restricted quantification
 
Syntaxwral 2556 Extend wff notation to include restricted universal quantification.
 wff  A. x  e.  A  ph
 
Syntaxwrex 2557 Extend wff notation to include restricted existential quantification.
 wff  E. x  e.  A  ph
 
Syntaxwreu 2558 Extend wff notation to include restricted existential uniqueness.
 wff  E! x  e.  A  ph
 
Syntaxwrmo 2559 Extend wff notation to include restricted "at most one."
 wff  E* x  e.  A ph
 
Syntaxcrab 2560 Extend class notation to include the restricted class abstraction (class builder).
 class  { x  e.  A  |  ph }
 
Definitiondf-ral 2561 Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.)
 |-  ( A. x  e.  A  ph  <->  A. x ( x  e.  A  ->  ph )
 )
 
Definitiondf-rex 2562 Define restricted existential quantification. Special case of Definition 4.15(4) of [TakeutiZaring] p. 22. (Contributed by NM, 30-Aug-1993.)
 |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
 )
 
Definitiondf-reu 2563 Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.)
 |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
 )
 
Definitiondf-rmo 2564 Define restricted "at most one". (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x  e.  A ph  <->  E* x ( x  e.  A  /\  ph )
 )
 
Definitiondf-rab 2565 Define a restricted class abstraction (class builder), which is the class of all  x in  A such that  ph is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.)
 |- 
 { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
 
Theoremralnex 2566 Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
 |-  ( A. x  e.  A  -.  ph  <->  -.  E. x  e.  A  ph )
 
Theoremrexnal 2567 Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
 |-  ( E. x  e.  A  -.  ph  <->  -.  A. x  e.  A  ph )
 
Theoremdfral2 2568 Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
 |-  ( A. x  e.  A  ph  <->  -.  E. x  e.  A  -.  ph )
 
Theoremdfrex2 2569 Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
 |-  ( E. x  e.  A  ph  <->  -.  A. x  e.  A  -.  ph )
 
Theoremralbida 2570 Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbida 2571 Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbidva 2572* Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 4-Mar-1997.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbidva 2573* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 9-Mar-1997.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbid 2574 Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbid 2575 Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbidv 2576* Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 20-Nov-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbidv 2577* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 20-Nov-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbidv2 2578* Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 6-Apr-1997.)
 |-  ( ph  ->  (
 ( x  e.  A  ->  ps )  <->  ( x  e.  B  ->  ch )
 ) )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
Theoremrexbidv2 2579* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 22-May-1999.)
 |-  ( ph  ->  (
 ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch )
 ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
Theoremralbii 2580 Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  A  ps )
 
Theoremrexbii 2581 Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.)
 |-  ( ph  <->  ps )   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )
 
Theorem2ralbii 2582 Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x  e.  A  A. y  e.  B  ps )
 
Theorem2rexbii 2583 Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
 |-  ( ph  <->  ps )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x  e.  A  E. y  e.  B  ps )
 
Theoremralbii2 2584 Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.)
 |-  ( ( x  e.  A  ->  ph )  <->  ( x  e.  B  ->  ps )
 )   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  B  ps )
 
Theoremrexbii2 2585 Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
 |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ps )
 
Theoremraleqbii 2586 Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
 |-  A  =  B   &    |-  ( ps 
 <->  ch )   =>    |-  ( A. x  e.  A  ps  <->  A. x  e.  B  ch )
 
Theoremrexeqbii 2587 Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
 |-  A  =  B   &    |-  ( ps 
 <->  ch )   =>    |-  ( E. x  e.  A  ps  <->  E. x  e.  B  ch )
 
Theoremralbiia 2588 Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  A  ps )
 
Theoremrexbiia 2589 Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )
 
Theorem2rexbiia 2590* Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x  e.  A  E. y  e.  B  ps )
 
Theoremr2alf 2591* Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y A   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y
 ( ( x  e.  A  /\  y  e.  B )  ->  ph )
 )
 
Theoremr2exf 2592* Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y A   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y
 ( ( x  e.  A  /\  y  e.  B )  /\  ph )
 )
 
Theoremr2al 2593* Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
 |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y
 ( ( x  e.  A  /\  y  e.  B )  ->  ph )
 )
 
Theoremr2ex 2594* Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.)
 |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y
 ( ( x  e.  A  /\  y  e.  B )  /\  ph )
 )
 
Theorem2ralbida 2595* Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 24-Feb-2004.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  (
 ( ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theorem2ralbidva 2596* Formula-building rule for restricted universal quantifiers (deduction rule). (Contributed by NM, 4-Mar-1997.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theorem2rexbidva 2597* Formula-building rule for restricted existential quantifiers (deduction rule). (Contributed by NM, 15-Dec-2004.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps 
 <-> 
 E. x  e.  A  E. y  e.  B  ch ) )
 
Theorem2ralbidv 2598* Formula-building rule for restricted universal quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theorem2rexbidv 2599* Formula-building rule for restricted existential quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps 
 <-> 
 E. x  e.  A  E. y  e.  B  ch ) )
 
Theoremrexralbidv 2600* Formula-building rule for restricted quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  A. y  e.  B  ps  <->  E. x  e.  A  A. y  e.  B  ch ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32776
  Copyright terms: Public domain < Previous  Next >