HomeHome Metamath Proof Explorer
Theorem List (p. 26 of 314)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21458)
  Hilbert Space Explorer  Hilbert Space Explorer
(21459-22981)
  Users' Mathboxes  Users' Mathboxes
(22982-31321)
 

Theorem List for Metamath Proof Explorer - 2501-2600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempm2.61da3ne 2501 Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013.)
 |-  ( ( ph  /\  A  =  B )  ->  ps )   &    |-  (
 ( ph  /\  C  =  D )  ->  ps )   &    |-  (
 ( ph  /\  E  =  F )  ->  ps )   &    |-  (
 ( ph  /\  ( A  =/=  B  /\  C  =/=  D  /\  E  =/=  F ) )  ->  ps )   =>    |-  ( ph  ->  ps )
 
Theoremnecom 2502 Commutation of inequality. (Contributed by NM, 14-May-1999.)
 |-  ( A  =/=  B  <->  B  =/=  A )
 
Theoremnecomi 2503 Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.)
 |-  A  =/=  B   =>    |-  B  =/=  A
 
Theoremnecomd 2504 Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.)
 |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  B  =/=  A )
 
Theoremneor 2505 Logical OR with an equality. (Contributed by NM, 29-Apr-2007.)
 |-  ( ( A  =  B  \/  ps )  <->  ( A  =/=  B 
 ->  ps ) )
 
Theoremneanior 2506 A DeMorgan's law for inequality. (Contributed by NM, 18-May-2007.)
 |-  ( ( A  =/=  B 
 /\  C  =/=  D ) 
 <->  -.  ( A  =  B  \/  C  =  D ) )
 
Theoremne3anior 2507 A DeMorgan's law for inequality. (Contributed by NM, 30-Sep-2013.)
 |-  ( ( A  =/=  B 
 /\  C  =/=  D  /\  E  =/=  F )  <->  -.  ( A  =  B  \/  C  =  D  \/  E  =  F )
 )
 
Theoremneorian 2508 A DeMorgan's law for inequality. (Contributed by NM, 18-May-2007.)
 |-  ( ( A  =/=  B  \/  C  =/=  D ) 
 <->  -.  ( A  =  B  /\  C  =  D ) )
 
Theoremnemtbir 2509 An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
 |-  A  =/=  B   &    |-  ( ph 
 <->  A  =  B )   =>    |-  -.  ph
 
Theoremnelne1 2510 Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.)
 |-  ( ( A  e.  B  /\  -.  A  e.  C )  ->  B  =/=  C )
 
Theoremnelne2 2511 Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.)
 |-  ( ( A  e.  C  /\  -.  B  e.  C )  ->  A  =/=  B )
 
Theoremneleq1 2512 Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
 |-  ( A  =  B  ->  ( A  e/  C  <->  B 
 e/  C ) )
 
Theoremneleq2 2513 Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
 |-  ( A  =  B  ->  ( C  e/  A  <->  C 
 e/  B ) )
 
Theoremnfne 2514 Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  =/=  B
 
Theoremnfnel 2515 Bound-variable hypothesis builder for inequality. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  e/  B
 
Theoremnfned 2516 Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A  =/=  B )
 
Theoremnfneld 2517 Bound-variable hypothesis builder for inequality. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/ x  A  e/  B )
 
2.1.5  Restricted quantification
 
Syntaxwral 2518 Extend wff notation to include restricted universal quantification.
 wff  A. x  e.  A  ph
 
Syntaxwrex 2519 Extend wff notation to include restricted existential quantification.
 wff  E. x  e.  A  ph
 
Syntaxwreu 2520 Extend wff notation to include restricted existential uniqueness.
 wff  E! x  e.  A  ph
 
Syntaxwrmo 2521 Extend wff notation to include restricted "at most one."
 wff  E* x  e.  A ph
 
Syntaxcrab 2522 Extend class notation to include the restricted class abstraction (class builder).
 class  { x  e.  A  |  ph }
 
Definitiondf-ral 2523 Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.)
 |-  ( A. x  e.  A  ph  <->  A. x ( x  e.  A  ->  ph )
 )
 
Definitiondf-rex 2524 Define restricted existential quantification. Special case of Definition 4.15(4) of [TakeutiZaring] p. 22. (Contributed by NM, 30-Aug-1993.)
 |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
 )
 
Definitiondf-reu 2525 Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.)
 |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
 )
 
Definitiondf-rmo 2526 Define restricted "at most one". (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x  e.  A ph  <->  E* x ( x  e.  A  /\  ph )
 )
 
Definitiondf-rab 2527 Define a restricted class abstraction (class builder), which is the class of all  x in  A such that  ph is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.)
 |- 
 { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
 
Theoremralnex 2528 Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
 |-  ( A. x  e.  A  -.  ph  <->  -.  E. x  e.  A  ph )
 
Theoremrexnal 2529 Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
 |-  ( E. x  e.  A  -.  ph  <->  -.  A. x  e.  A  ph )
 
Theoremdfral2 2530 Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
 |-  ( A. x  e.  A  ph  <->  -.  E. x  e.  A  -.  ph )
 
Theoremdfrex2 2531 Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
 |-  ( E. x  e.  A  ph  <->  -.  A. x  e.  A  -.  ph )
 
Theoremralbida 2532 Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbida 2533 Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbidva 2534* Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 4-Mar-1997.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbidva 2535* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 9-Mar-1997.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbid 2536 Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbid 2537 Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbidv 2538* Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 20-Nov-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  A  ch ) )
 
Theoremrexbidv 2539* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 20-Nov-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  A  ch ) )
 
Theoremralbidv2 2540* Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 6-Apr-1997.)
 |-  ( ph  ->  (
 ( x  e.  A  ->  ps )  <->  ( x  e.  B  ->  ch )
 ) )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
Theoremrexbidv2 2541* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 22-May-1999.)
 |-  ( ph  ->  (
 ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch )
 ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
Theoremralbii 2542 Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  A  ps )
 
Theoremrexbii 2543 Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.)
 |-  ( ph  <->  ps )   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )
 
Theorem2ralbii 2544 Inference adding 2 restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
 |-  ( ph  <->  ps )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x  e.  A  A. y  e.  B  ps )
 
Theorem2rexbii 2545 Inference adding 2 restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
 |-  ( ph  <->  ps )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x  e.  A  E. y  e.  B  ps )
 
Theoremralbii2 2546 Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.)
 |-  ( ( x  e.  A  ->  ph )  <->  ( x  e.  B  ->  ps )
 )   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  B  ps )
 
Theoremrexbii2 2547 Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004.)
 |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ps )
 
Theoremraleqbii 2548 Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
 |-  A  =  B   &    |-  ( ps 
 <->  ch )   =>    |-  ( A. x  e.  A  ps  <->  A. x  e.  B  ch )
 
Theoremrexeqbii 2549 Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
 |-  A  =  B   &    |-  ( ps 
 <->  ch )   =>    |-  ( E. x  e.  A  ps  <->  E. x  e.  B  ch )
 
Theoremralbiia 2550 Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  A  ps )
 
Theoremrexbiia 2551 Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )
 
Theorem2rexbiia 2552* Inference adding 2 restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x  e.  A  E. y  e.  B  ps )
 
Theoremr2alf 2553* Double restricted universal quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y A   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y
 ( ( x  e.  A  /\  y  e.  B )  ->  ph )
 )
 
Theoremr2exf 2554* Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y A   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y
 ( ( x  e.  A  /\  y  e.  B )  /\  ph )
 )
 
Theoremr2al 2555* Double restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
 |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. x A. y
 ( ( x  e.  A  /\  y  e.  B )  ->  ph )
 )
 
Theoremr2ex 2556* Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.)
 |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x E. y
 ( ( x  e.  A  /\  y  e.  B )  /\  ph )
 )
 
Theorem2ralbida 2557* Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 24-Feb-2004.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  (
 ( ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theorem2ralbidva 2558* Formula-building rule for restricted universal quantifiers (deduction rule). (Contributed by NM, 4-Mar-1997.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theorem2rexbidva 2559* Formula-building rule for restricted existential quantifiers (deduction rule). (Contributed by NM, 15-Dec-2004.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps 
 <-> 
 E. x  e.  A  E. y  e.  B  ch ) )
 
Theorem2ralbidv 2560* Formula-building rule for restricted universal quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.) (Revised by Szymon Jaroszewicz, 16-Mar-2007.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  A. y  e.  B  ps  <->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theorem2rexbidv 2561* Formula-building rule for restricted existential quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps 
 <-> 
 E. x  e.  A  E. y  e.  B  ch ) )
 
Theoremrexralbidv 2562* Formula-building rule for restricted quantifiers (deduction rule). (Contributed by NM, 28-Jan-2006.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  A. y  e.  B  ps  <->  E. x  e.  A  A. y  e.  B  ch ) )
 
Theoremralinexa 2563 A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.)
 |-  ( A. x  e.  A  ( ph  ->  -. 
 ps )  <->  -.  E. x  e.  A  ( ph  /\  ps ) )
 
Theoremrexanali 2564 A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.)
 |-  ( E. x  e.  A  ( ph  /\  -.  ps )  <->  -.  A. x  e.  A  ( ph  ->  ps ) )
 
Theoremrisset 2565* Two ways to say " A belongs to  B." (Contributed by NM, 22-Nov-1994.)
 |-  ( A  e.  B  <->  E. x  e.  B  x  =  A )
 
Theoremhbral 2566 Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by David Abernethy, 13-Dec-2009.)
 |-  ( y  e.  A  ->  A. x  y  e.  A )   &    |-  ( ph  ->  A. x ph )   =>    |-  ( A. y  e.  A  ph  ->  A. x A. y  e.  A  ph )
 
Theoremhbra1 2567  x is not free in  A. x  e.  A ph. (Contributed by NM, 18-Oct-1996.)
 |-  ( A. x  e.  A  ph  ->  A. x A. x  e.  A  ph )
 
Theoremnfra1 2568  x is not free in  A. x  e.  A ph. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |- 
 F/ x A. x  e.  A  ph
 
Theoremnfrald 2569 Deduction version of nfral 2571. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x A. y  e.  A  ps )
 
Theoremnfrexd 2570 Deduction version of nfrex 2573. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E. y  e.  A  ps )
 
Theoremnfral 2571 Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x A. y  e.  A  ph
 
Theoremnfra2 2572* Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 27686. Contributed by Alan Sare 31-Dec-2011. (Contributed by NM, 31-Dec-2011.)
 |- 
 F/ y A. x  e.  A  A. y  e.  B  ph
 
Theoremnfrex 2573 Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x E. y  e.  A  ph
 
Theoremnfre1 2574  x is not free in  E. x  e.  A ph. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |- 
 F/ x E. x  e.  A  ph
 
Theoremr3al 2575* Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
 |-  ( A. x  e.  A  A. y  e.  B  A. z  e.  C  ph  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )
 )
 
Theoremalral 2576 Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.)
 |-  ( A. x ph  ->  A. x  e.  A  ph )
 
Theoremrexex 2577 Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
 |-  ( E. x  e.  A  ph  ->  E. x ph )
 
Theoremra4 2578 Restricted specialization. (Contributed by NM, 17-Oct-1996.)
 |-  ( A. x  e.  A  ph  ->  ( x  e.  A  ->  ph )
 )
 
Theoremra4e 2579 Restricted specialization. (Contributed by NM, 12-Oct-1999.)
 |-  ( ( x  e.  A  /\  ph )  ->  E. x  e.  A  ph )
 
Theoremra42 2580 Restricted specialization. (Contributed by NM, 11-Feb-1997.)
 |-  ( A. x  e.  A  A. y  e.  B  ph  ->  ( ( x  e.  A  /\  y  e.  B )  -> 
 ph ) )
 
Theoremra42e 2581 Restricted specialization. (Contributed by FL, 4-Jun-2012.)
 |-  ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  E. x  e.  A  E. y  e.  B  ph )
 
Theoremrspec 2582 Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
 |- 
 A. x  e.  A  ph   =>    |-  ( x  e.  A  -> 
 ph )
 
Theoremrgen 2583 Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
 |-  ( x  e.  A  -> 
 ph )   =>    |- 
 A. x  e.  A  ph
 
Theoremrgen2a 2584* Generalization rule for restricted quantification. Note that  x and  y needn't be distinct (and illustrates the use of dvelim 2096). (Contributed by NM, 23-Nov-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.
 |-  ( ( x  e.  A  /\  y  e.  A )  ->  ph )   =>    |-  A. x  e.  A  A. y  e.  A  ph
 
Theoremrgenw 2585 Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.)
 |-  ph   =>    |- 
 A. x  e.  A  ph
 
Theoremrgen2w 2586 Generalization rule for restricted quantification. Note that  x and  y needn't be distinct. (Contributed by NM, 18-Jun-2014.)
 |-  ph   =>    |- 
 A. x  e.  A  A. y  e.  B  ph
 
Theoremmprg 2587 Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.)
 |-  ( A. x  e.  A  ph  ->  ps )   &    |-  ( x  e.  A  ->  ph )   =>    |- 
 ps
 
Theoremmprgbir 2588 Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.)
 |-  ( ph  <->  A. x  e.  A  ps )   &    |-  ( x  e.  A  ->  ps )   =>    |-  ph
 
Theoremralim 2589 Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.)
 |-  ( A. x  e.  A  ( ph  ->  ps )  ->  ( A. x  e.  A  ph  ->  A. x  e.  A  ps ) )
 
Theoremralimi2 2590 Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.)
 |-  ( ( x  e.  A  ->  ph )  ->  ( x  e.  B  ->  ps ) )   =>    |-  ( A. x  e.  A  ph  ->  A. x  e.  B  ps )
 
Theoremralimia 2591 Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
 |-  ( x  e.  A  ->  ( ph  ->  ps )
 )   =>    |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )
 
Theoremralimiaa 2592 Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
 |-  ( ( x  e.  A  /\  ph )  ->  ps )   =>    |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )
 
Theoremralimi 2593 Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x  e.  A  ph 
 ->  A. x  e.  A  ps )
 
Theoremral2imi 2594 Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( A. x  e.  A  ph  ->  ( A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
 
Theoremralimdaa 2595 Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
 
Theoremralimdva 2596* Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
 
Theoremralimdv 2597* Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
 
Theoremralimdv2 2598* Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.)
 |-  ( ph  ->  (
 ( x  e.  A  ->  ps )  ->  ( x  e.  B  ->  ch ) ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps  ->  A. x  e.  B  ch ) )
 
Theoremralrimi 2599 Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( x  e.  A  ->  ps ) )   =>    |-  ( ph  ->  A. x  e.  A  ps )
 
Theoremralrimiv 2600* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ph  ->  ( x  e.  A  ->  ps ) )   =>    |-  ( ph  ->  A. x  e.  A  ps )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31321
  Copyright terms: Public domain < Previous  Next >