HomeHome Metamath Proof Explorer
Theorem List (p. 272 of 315)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21459)
  Hilbert Space Explorer  Hilbert Space Explorer
(21460-22982)
  Users' Mathboxes  Users' Mathboxes
(22983-31404)
 

Theorem List for Metamath Proof Explorer - 27101-27200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcliminf 27101* A bounded monotonic non increasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F : Z --> RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )   &    |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k
 ) )   =>    |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  `'  <  )
 )
 
Theoremclimsuselem1 27102* The subsequence index  I has the expected properties: it belongs to the same upper integers as the original index, and it is always larger or equal than the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  ( I `  M )  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( I `  (
 k  +  1 ) )  e.  ( ZZ>= `  ( ( I `  k )  +  1
 ) ) )   =>    |-  ( ( ph  /\  K  e.  Z ) 
 ->  ( I `  K )  e.  ( ZZ>= `  K ) )
 
Theoremclimsuse 27103* A subsequence  G of a converging sequence  F, converges to the same limit.  I is the strictly increasing and it is used to index the subsequence (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  F/_ k G   &    |-  F/_ k I   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  X )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  ( I `  M )  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( I `  ( k  +  1 ) )  e.  ( ZZ>= `  ( ( I `  k )  +  1 ) ) )   &    |-  ( ph  ->  G  e.  Y )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( F `
  ( I `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclimrecf 27104* A version of climrec 27098 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  F/ k ph   &    |-  F/_ k G   &    |-  F/_ k H   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  G  ~~>  A )   &    |-  ( ph  ->  A  =/=  0
 )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( G `  k )  e.  ( CC  \  {
 0 } ) )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( 1  /  ( G `  k ) ) )   &    |-  ( ph  ->  H  e.  W )   =>    |-  ( ph  ->  H  ~~>  ( 1  /  A ) )
 
Theoremclimneg 27105* Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   =>    |-  ( ph  ->  ( k  e.  Z  |->  -u ( F `  k ) )  ~~>  -u A )
 
Theoremcliminff 27106* A version of climinf 27101 using bound-variable hypotheses instead of distinct variable conditions (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F : Z --> RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )   &    |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k
 ) )   =>    |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  `'  <  )
 )
 
Theoremclimdivf 27107* Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  F/_ k G   &    |-  F/_ k H   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  ( ph  ->  B  =/=  0
 )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  ( CC  \  { 0 } )
 )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( F `  k )  /  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( A  /  B ) )
 
Theoremclimreeq 27108 If  F is a real function, then  F converges to  A with respect to the standard topology on the reals if and only if it converges to  A with respect to the standard topology on complex numbers. In the theorem,  R is defined to be convergence w.r.t. the standard topology on the reals and then  F R A represents the statement " F converges to  A, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that  A is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.)
 |-  R  =  ( ~~> t `  ( topGen `
  ran  (,) ) )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F : Z --> RR )   =>    |-  ( ph  ->  ( F R A  <->  F  ~~>  A ) )
 
18.19.4  Derivatives
 
Theoremdvsinexp 27109* The derivative of sin^N . (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  ( ( sin `  x ) ^ N ) ) )  =  ( x  e.  CC  |->  ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) ) )
 
Theoremdvcosre 27110 The real derivative of the cosine (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  ( RR  _D  ( x  e. 
 RR  |->  ( cos `  x ) ) )  =  ( x  e.  RR  |->  -u ( sin `  x ) )
 
18.19.5  Integrals
 
Theoremioovolcl 27111 An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR )  ->  ( vol `  ( A (,) B ) )  e.  RR )
 
Theoremvolioo 27112 The measure of an open interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  ( A (,) B ) )  =  ( B  -  A ) )
 
Theoremitgsin0pilem1 27113* Calculation of the integral for sine on the (0,π) interval (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  C  =  ( t  e.  (
 0 [,] pi )  |->  -u ( cos `  t )
 )   =>    |- 
 S. ( 0 (,)
 pi ) ( sin `  x )  _d x  =  2
 
Theoremibliccsinexp 27114* sin^n on a closed interval is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR  /\  N  e.  NN0 )  ->  ( x  e.  ( A [,] B )  |->  ( ( sin `  x ) ^ N ) )  e.  L ^1 )
 
Theoremitgsin0pi 27115 Calculation of the integral for sine on the (0,π) interval (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  S. ( 0 (,) pi ) ( sin `  x )  _d x  =  2
 
Theoremiblioosinexp 27116* sin^n on an open integral is integrable (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR  /\  N  e.  NN0 )  ->  ( x  e.  ( A (,) B )  |->  ( ( sin `  x ) ^ N ) )  e.  L ^1 )
 
Theoremitgsinexplem1 27117* Integration by parts is applied to integrate sin^(N+1) (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  F  =  ( x  e.  CC  |->  ( ( sin `  x ) ^ N ) )   &    |-  G  =  ( x  e.  CC  |->  -u ( cos `  x ) )   &    |-  H  =  ( x  e.  CC  |->  ( ( N  x.  (
 ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) ) )   &    |-  I  =  ( x  e.  CC  |->  ( ( ( sin `  x ) ^ N )  x.  ( sin `  x ) ) )   &    |-  L  =  ( x  e.  CC  |->  ( ( ( N  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  x.  ( cos `  x ) )  x.  -u ( cos `  x ) ) )   &    |-  M  =  ( x  e.  CC  |->  ( ( ( cos `  x ) ^ 2
 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  S. ( 0 (,) pi ) ( ( ( sin `  x ) ^ N )  x.  ( sin `  x ) )  _d x  =  ( N  x.  S. (
 0 (,) pi ) ( ( ( cos `  x ) ^ 2 )  x.  ( ( sin `  x ) ^ ( N  -  1 ) ) )  _d x ) )
 
Theoremitgsinexp 27118* A recursive formula for the integral of sin^N on the interval (0,π) .

(Contributed by Glauco Siliprandi, 29-Jun-2017.)

 |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n )  _d x )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  2 ) )   =>    |-  ( ph  ->  ( I `  N )  =  ( ( ( N  -  1 )  /  N )  x.  ( I `  ( N  -  2
 ) ) ) )
 
18.19.6  Stone Weierstrass theorem - real version
 
Theoremstoweidlem1 27119 Lemma for stoweid 27181. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90; the key step uses Bernoulli's inequality bernneq 11194. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  NN )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A 
 <_  1 )   &    |-  ( ph  ->  D 
 <_  A )   =>    |-  ( ph  ->  (
 ( 1  -  ( A ^ N ) ) ^ ( K ^ N ) )  <_  ( 1  /  (
 ( K  x.  D ) ^ N ) ) )
 
Theoremstoweidlem2 27120* lemma for stoweid 27181: here we prove that the subalgebra of continuous functions, which contains constant functions, is closed under scaling. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ t ph   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
 g `  t )
 ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ( ph  /\  f  e.  A )  ->  f : T --> RR )   &    |-  ( ph  ->  E  e.  RR )   &    |-  ( ph  ->  F  e.  A )   =>    |-  ( ph  ->  (
 t  e.  T  |->  ( E  x.  ( F `
  t ) ) )  e.  A )
 
Theoremstoweidlem3 27121* Lemma for stoweid 27181: if  A is positive and all  M terms of a finite product are larger than  A, then the finite product is larger than A^M. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ i F   &    |- 
 F/ i ph   &    |-  X  =  seq  1 (  x.  ,  F )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) --> RR )   &    |-  (
 ( ph  /\  i  e.  ( 1 ... M ) )  ->  A  <  ( F `  i ) )   &    |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A ^ M )  < 
 ( X `  M ) )
 
Theoremstoweidlem4 27122* Lemma for stoweid 27181: a class variable replaces a set variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  (
 ( ph  /\  x  e. 
 RR )  ->  (
 t  e.  T  |->  x )  e.  A )   =>    |-  ( ( ph  /\  B  e.  RR )  ->  (
 t  e.  T  |->  B )  e.  A )
 
Theoremstoweidlem5 27123* There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on  T  \  U. Here  D is used to represent δ in the paper and  Q to represent  T 
\  U in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ t ph   &    |-  D  =  if ( C  <_  ( 1 
 /  2 ) ,  C ,  ( 1 
 /  2 ) )   &    |-  ( ph  ->  P : T
 --> RR )   &    |-  ( ph  ->  Q 
 C_  T )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. t  e.  Q  C  <_  ( P `  t ) )   =>    |-  ( ph  ->  E. d
 ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  Q  d 
 <_  ( P `  t
 ) ) )
 
Theoremstoweidlem6 27124* Lemma for stoweid 27181: two class variables replace two set variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ t  f  =  F   &    |-  F/ t  g  =  G   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   =>    |-  ( ( ph  /\  F  e.  A  /\  G  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) )  e.  A )
 
Theoremstoweidlem7 27125* This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on  T  \  U, and qn > 1 - ε on  V. Here it is proven that, for  n large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable  A is used to represent (k*δ) in the paper, and  B is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F  =  ( i  e.  NN0  |->  ( ( 1  /  A ) ^ i
 ) )   &    |-  G  =  ( i  e.  NN0  |->  ( B ^ i ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1  <  A )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  B  <  1 )   &    |-  ( ph  ->  E  e.  RR+ )   =>    |-  ( ph  ->  E. n  e.  NN  ( ( 1  -  E )  < 
 ( 1  -  ( B ^ n ) ) 
 /\  ( 1  /  ( A ^ n ) )  <  E ) )
 
Theoremstoweidlem8 27126* Lemma for stoweid 27181: two class variables replace two set variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  F/_ t F   &    |-  F/_ t G   =>    |-  ( ( ph  /\  F  e.  A  /\  G  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  +  ( G `  t ) ) )  e.  A )
 
Theoremstoweidlem9 27127* Lemma for stoweid 27181: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  ( ph  ->  T  =  (/) )   &    |-  ( ph  ->  (
 t  e.  T  |->  1 )  e.  A )   =>    |-  ( ph  ->  E. g  e.  A  A. t  e.  T  ( abs `  (
 ( g `  t
 )  -  ( F `
  t ) ) )  <  E )
 
Theoremstoweidlem10 27128 Lemma for stoweid 27181. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  (
 ( A  e.  RR  /\  N  e.  NN0  /\  A  <_  1 )  ->  (
 1  -  ( N  x.  A ) ) 
 <_  ( ( 1  -  A ) ^ N ) )
 
Theoremstoweidlem11 27129* This lemma is used to prove that there is a function  g as in the proof of [BrosowskiDeutsh] p. 92, (at the top of page 92): this lemma proves that g(t) < ( j + 1 / 3 ) * ε. Here  E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  t  e.  T )   &    |-  ( ph  ->  j  e.  ( 1 ...
 N ) )   &    |-  (
 ( ph  /\  i  e.  ( 0 ... N ) )  ->  ( X `
  i ) : T --> RR )   &    |-  (
 ( ph  /\  i  e.  ( 0 ... N ) )  ->  ( ( X `  i ) `
  t )  <_ 
 1 )   &    |-  ( ( ph  /\  i  e.  ( j
 ... N ) ) 
 ->  ( ( X `  i ) `  t
 )  <  ( E  /  N ) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  E  <  ( 1  /  3
 ) )   =>    |-  ( ph  ->  (
 ( t  e.  T  |->  sum_
 i  e.  ( 0
 ... N ) ( E  x.  ( ( X `  i ) `
  t ) ) ) `  t )  <  ( ( j  +  ( 1  / 
 3 ) )  x.  E ) )
 
Theoremstoweidlem12 27130* Lemma for stoweid 27181. This Lemma is used by other three Lemmas. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  Q  =  ( t  e.  T  |->  ( ( 1  -  ( ( P `  t ) ^ N ) ) ^ ( K ^ N ) ) )   &    |-  ( ph  ->  P : T --> RR )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  K  e.  NN0 )   =>    |-  ( ( ph  /\  t  e.  T )  ->  ( Q `  t )  =  ( ( 1  -  ( ( P `  t ) ^ N ) ) ^ ( K ^ N ) ) )
 
Theoremstoweidlem13 27131 Lemma for stoweid 27181. This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon , in [BrosowskiDeutsh] p. 92, the last step of the proof. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  X  e.  RR )   &    |-  ( ph  ->  Y  e.  RR )   &    |-  ( ph  ->  j  e.  RR )   &    |-  ( ph  ->  (
 ( j  -  (
 4  /  3 )
 )  x.  E )  <  X )   &    |-  ( ph  ->  X  <_  (
 ( j  -  (
 1  /  3 )
 )  x.  E ) )   &    |-  ( ph  ->  ( ( j  -  (
 4  /  3 )
 )  x.  E )  <  Y )   &    |-  ( ph  ->  Y  <  (
 ( j  +  (
 1  /  3 )
 )  x.  E ) )   =>    |-  ( ph  ->  ( abs `  ( Y  -  X ) )  < 
 ( 2  x.  E ) )
 
Theoremstoweidlem14 27132* There exists a  k as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90:  k is an integer and 1 < k * δ < 2.  D is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  A  =  { j  e.  NN  |  ( 1  /  D )  <  j }   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  D  <  1 )   =>    |-  ( ph  ->  E. k  e.  NN  ( 1  < 
 ( k  x.  D )  /\  ( ( k  x.  D )  / 
 2 )  <  1
 ) )
 
Theoremstoweidlem15 27133* This lemma is used to prove the existence of a function  p as in Lemma 1 from [BrosowskiDeutsh] p. 90:  p is in the subalgebra, such that 0 ≤ p ≤ 1, p(t_0) = 0, and p > 0 on T - U. Here  ( G `  I ) is used to represent p(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  ( ph  ->  G : ( 1 ... M ) --> Q )   &    |-  ( ( ph  /\  f  e.  A ) 
 ->  f : T --> RR )   =>    |-  (
 ( ( ph  /\  I  e.  ( 1 ... M ) )  /\  S  e.  T )  ->  ( ( ( G `  I
 ) `  S )  e.  RR  /\  0  <_  ( ( G `  I ) `  S )  /\  ( ( G `
  I ) `  S )  <_  1 ) )
 
Theoremstoweidlem16 27134* Lemma for stoweid 27181. The subset  Y of functions in the algebra  A, with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ t ph   &    |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) }   &    |-  H  =  ( t  e.  T  |->  ( ( f `  t )  x.  (
 g `  t )
 ) )   &    |-  ( ( ph  /\  f  e.  A ) 
 ->  f : T --> RR )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   =>    |-  ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  ->  H  e.  Y )
 
Theoremstoweidlem17 27135* This lemma proves that the function 
g (as defined in [BrosowskiDeutsh] p. 91, at the end of page 91) belongs to the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ t ph   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  X : ( 0 ... N ) --> A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  (
 g `  t )
 ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ph  ->  E  e.  RR )   &    |-  ( ( ph  /\  f  e.  A ) 
 ->  f : T --> RR )   =>    |-  ( ph  ->  ( t  e.  T  |->  sum_ i  e.  (
 0 ... N ) ( E  x.  ( ( X `  i ) `
  t ) ) )  e.  A )
 
Theoremstoweidlem18 27136* This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t D   &    |- 
 F/ t ph   &    |-  F  =  ( t  e.  T  |->  1 )   &    |-  T  =  U. J   &    |-  ( ( ph  /\  a  e.  RR )  ->  (
 t  e.  T  |->  a )  e.  A )   &    |-  ( ph  ->  B  e.  ( Clsd `  J )
 )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  D  =  (/) )   =>    |-  ( ph  ->  E. x  e.  A  ( A. t  e.  T  ( 0  <_  ( x `  t ) 
 /\  ( x `  t )  <_  1 ) 
 /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  (
 1  -  E )  <  ( x `  t ) ) )
 
Theoremstoweidlem19 27137* If a set of real functions is closed under multiplication and it contains constants, then it is closed under finite exponentiation. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t F   &    |- 
 F/ t ph   &    |-  ( ( ph  /\  f  e.  A ) 
 ->  f : T --> RR )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  (
 t  e.  T  |->  ( ( F `  t
 ) ^ N ) )  e.  A )
 
Theoremstoweidlem20 27138* If a set A of real functions from a common domain T is closed under the sum of two functions, then it is closed under the sum of a finite number of functions, indexed by G. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ t ph   &    |-  F  =  ( t  e.  T  |->  sum_ i  e.  ( 1 ...
 M ) ( ( G `  i ) `
  t ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  G : ( 1 ...
 M ) --> A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A )  ->  f : T --> RR )   =>    |-  ( ph  ->  F  e.  A )
 
Theoremstoweidlem21 27139* Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t G   &    |-  F/_ t H   &    |-  F/_ t S   &    |-  F/ t ph   &    |-  G  =  ( t  e.  T  |->  ( ( H `  t
 )  +  S ) )   &    |-  ( ph  ->  F : T --> RR )   &    |-  ( ph  ->  S  e.  RR )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ph  ->  A. f  e.  A  f : T --> RR )   &    |-  ( ph  ->  H  e.  A )   &    |-  ( ph  ->  A. t  e.  T  ( abs `  ( ( H `  t )  -  ( ( F `  t )  -  S ) ) )  <  E )   =>    |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  (
 ( f `  t
 )  -  ( F `
  t ) ) )  <  E )
 
Theoremstoweidlem22 27140* If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ t ph   &    |-  F/_ t F   &    |-  F/_ t G   &    |-  H  =  ( t  e.  T  |->  ( ( F `  t )  -  ( G `  t ) ) )   &    |-  I  =  ( t  e.  T  |->  -u 1 )   &    |-  L  =  ( t  e.  T  |->  ( ( I `  t )  x.  ( G `  t ) ) )   &    |-  ( ( ph  /\  f  e.  A ) 
 ->  f : T --> RR )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   =>    |-  ( ( ph  /\  F  e.  A  /\  G  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  -  ( G `  t ) ) )  e.  A )
 
Theoremstoweidlem23 27141* This lemma is used to prove the existence of a function pt as in the beginning of Lemma 1 [BrosowskiDeutsh] p. 90: for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ t ph   &    |-  F/_ t G   &    |-  H  =  ( t  e.  T  |->  ( ( G `  t )  -  ( G `  Z ) ) )   &    |-  ( ( ph  /\  f  e.  A ) 
 ->  f : T --> RR )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ph  ->  S  e.  T )   &    |-  ( ph  ->  Z  e.  T )   &    |-  ( ph  ->  G  e.  A )   &    |-  ( ph  ->  ( G `  S )  =/=  ( G `  Z ) )   =>    |-  ( ph  ->  ( H  e.  A  /\  ( H `  S )  =/=  ( H `  Z )  /\  ( H `
  Z )  =  0 ) )
 
Theoremstoweidlem24 27142* This lemma proves that for  n sufficiently large, qn( t ) > ( 1 - epsilon ), for all  t in  V: see Lemma 1 [BrosowskiDeutsh] p. 90, (at the bottom of page 90). 
Q is used to represent qn in the paper,  N to represent  n in the paper,  K to represent  k,  D to represent δ, and  E to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  V  =  { t  e.  T  |  ( P `  t
 )  <  ( D  /  2 ) }   &    |-  Q  =  ( t  e.  T  |->  ( ( 1  -  ( ( P `  t ) ^ N ) ) ^ ( K ^ N ) ) )   &    |-  ( ph  ->  P : T --> RR )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  K  e.  NN0 )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  ( 1  -  E )  <  ( 1  -  ( ( ( K  x.  D )  / 
 2 ) ^ N ) ) )   &    |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t ) 
 <_  1 ) )   =>    |-  ( ( ph  /\  t  e.  V ) 
 ->  ( 1  -  E )  <  ( Q `  t ) )
 
Theoremstoweidlem25 27143* This lemma proves that for n sufficiently large, qn( t ) < ε, for all  t in  T  \  U: see Lemma 1 [BrosowskiDeutsh] p. 91 (at the top of page 91).  Q is used to represent qn in the paper,  N to represent n in the paper,  K to represent k,  D to represent δ,  P to represent p, and  E to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  Q  =  ( t  e.  T  |->  ( ( 1  -  ( ( P `  t ) ^ N ) ) ^ ( K ^ N ) ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  NN )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  P : T --> RR )   &    |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t ) 
 <_  1 ) )   &    |-  ( ph  ->  A. t  e.  ( T  \  U ) D 
 <_  ( P `  t
 ) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  ( 1  /  ( ( K  x.  D ) ^ N ) )  <  E )   =>    |-  ( ( ph  /\  t  e.  ( T 
 \  U ) ) 
 ->  ( Q `  t
 )  <  E )
 
Theoremstoweidlem26 27144* This lemma is used to prove that there is a function  g as in the proof of [BrosowskiDeutsh] p. 92: this lemma proves that g(t) > ( j - 4 / 3 ) * ε. Here  L is used to represnt j in the paper,  D is used to represent A in the paper,  S is used to represent t, and  E is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t F   &    |- 
 F/ j ph   &    |-  F/ t ph   &    |-  D  =  ( j  e.  (
 0 ... N )  |->  { t  e.  T  |  ( F `  t ) 
 <_  ( ( j  -  ( 1  /  3
 ) )  x.  E ) } )   &    |-  B  =  ( j  e.  ( 0
 ... N )  |->  { t  e.  T  |  ( ( j  +  ( 1  /  3
 ) )  x.  E )  <_  ( F `  t ) } )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T  e.  _V )   &    |-  ( ph  ->  L  e.  ( 1 ...
 N ) )   &    |-  ( ph  ->  S  e.  (
 ( D `  L )  \  ( D `  ( L  -  1
 ) ) ) )   &    |-  ( ph  ->  F : T
 --> RR )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  E  <  ( 1  / 
 3 ) )   &    |-  (
 ( ph  /\  i  e.  ( 0 ... N ) )  ->  ( X `
  i ) : T --> RR )   &    |-  (
 ( ph  /\  i  e.  ( 0 ... N )  /\  t  e.  T )  ->  0  <_  (
 ( X `  i
 ) `  t )
 )   &    |-  ( ( ph  /\  i  e.  ( 0 ... N )  /\  t  e.  ( B `  i ) ) 
 ->  ( 1  -  ( E  /  N ) )  <  ( ( X `
  i ) `  t ) )   =>    |-  ( ph  ->  ( ( L  -  (
 4  /  3 )
 )  x.  E )  <  ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... N ) ( E  x.  ( ( X `  i ) `  t
 ) ) ) `  S ) )
 
Theoremstoweidlem27 27145* This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here  ( q `  i ) is used to represent p(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  G  =  ( w  e.  X  |->  { h  e.  Q  |  w  =  { t  e.  T  |  0  < 
 ( h `  t
 ) } } )   &    |-  ( ph  ->  Q  e.  _V )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  Y  Fn  ran  G )   &    |-  ( ph  ->  ran  G  e.  _V )   &    |-  ( ( ph  /\  l  e.  ran  G )  ->  ( Y `  l )  e.  l
 )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> ran  G )   &    |-  ( ph  ->  ( T  \  U )  C_  U. X )   &    |- 
 F/ t ph   &    |-  F/ w ph   &    |-  F/_ h Q   =>    |-  ( ph  ->  E. q
 ( M  e.  NN  /\  ( q : ( 1 ... M ) --> Q  /\  A. t  e.  ( T  \  U ) E. i  e.  (
 1 ... M ) 0  <  ( ( q `
  i ) `  t ) ) ) )
 
Theoremstoweidlem28 27146* There exists a δ as in Lemma 1 [BrosowskiDeutsh] p. 90: 0 < delta < 1 and p >= delta on 
T  \  U. Here  d is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t U   &    |- 
 F/ t ph   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  T  =  U. J   &    |-  ( ph  ->  J  e.  Comp )   &    |-  ( ph  ->  P  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  A. t  e.  ( T  \  U ) 0  <  ( P `  t ) )   &    |-  ( ph  ->  U  e.  J )   =>    |-  ( ph  ->  E. d
 ( d  e.  RR+  /\  d  <  1  /\  A. t  e.  ( T 
 \  U ) d 
 <_  ( P `  t
 ) ) )
 
Theoremstoweidlem29 27147* When the hypothesis for the extreme value theorem hold, then the inf of the range of the function belongs to the range, it is real and it a lower bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t F   &    |- 
 F/ t ph   &    |-  T  =  U. J   &    |-  K  =  ( topGen `  ran  (,) )   &    |-  ( ph  ->  J  e.  Comp )   &    |-  ( ph  ->  F  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  T  =/=  (/) )   =>    |-  ( ph  ->  ( sup ( ran  F ,  RR ,  `'  <  )  e.  ran  F  /\  sup ( ran  F ,  RR ,  `'  <  )  e.  RR  /\  A. t  e.  T  sup ( ran 
 F ,  RR ,  `'  <  )  <_  ( F `  t ) ) )
 
Theoremstoweidlem30 27148* This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p,  ( G `  i ) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `
  i ) `  t ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  G : ( 1 ...
 M ) --> Q )   &    |-  ( ( ph  /\  f  e.  A )  ->  f : T --> RR )   =>    |-  ( ( ph  /\  S  e.  T ) 
 ->  ( P `  S )  =  ( (
 1  /  M )  x.  sum_ i  e.  (
 1 ... M ) ( ( G `  i
 ) `  S )
 ) )
 
Theoremstoweidlem31 27149* This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that  R is a finite subset of  V,  x indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all  i ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on  B. Here M is used to represent m in the paper,  E is used to represent ε in the paper, vi is used to represent V(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ h ph   &    |-  F/ t ph   &    |-  F/ w ph   &    |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) }   &    |-  V  =  { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  (
 A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 )  /\  A. t  e.  w  ( h `  t )  < 
 e  /\  A. t  e.  ( T  \  U ) ( 1  -  e )  <  ( h `
  t ) ) }   &    |-  G  =  ( w  e.  R  |->  { h  e.  A  |  ( A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 )  /\  A. t  e.  w  ( h `  t )  < 
 ( E  /  M )  /\  A. t  e.  ( T  \  U ) ( 1  -  ( E  /  M ) )  <  ( h `
  t ) ) } )   &    |-  ( ph  ->  R 
 C_  V )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  v : ( 1 ...
 M ) -1-1-onto-> R )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  B 
 C_  ( T  \  U ) )   &    |-  ( ph  ->  V  e.  _V )   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  ran 
 G  e.  Fin )   =>    |-  ( ph  ->  E. x ( x : ( 1 ...
 M ) --> Y  /\  A. i  e.  ( 1
 ... M ) (
 A. t  e.  (
 v `  i )
 ( ( x `  i ) `  t
 )  <  ( E  /  M )  /\  A. t  e.  B  (
 1  -  ( E 
 /  M ) )  <  ( ( x `
  i ) `  t ) ) ) )
 
Theoremstoweidlem32 27150* If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ t ph   &    |-  P  =  ( t  e.  T  |->  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `
  i ) `  t ) ) )   &    |-  F  =  ( t  e.  T  |->  sum_ i  e.  (
 1 ... M ) ( ( G `  i
 ) `  t )
 )   &    |-  H  =  ( t  e.  T  |->  Y )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  Y  e.  RR )   &    |-  ( ph  ->  G : ( 1 ... M ) --> A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  (
 g `  t )
 ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ( ph  /\  f  e.  A )  ->  f : T --> RR )   =>    |-  ( ph  ->  P  e.  A )
 
Theoremstoweidlem33 27151* If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t F   &    |-  F/_ t G   &    |-  F/ t ph   &    |-  (
 ( ph  /\  f  e.  A )  ->  f : T --> RR )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   =>    |-  ( ( ph  /\  F  e.  A  /\  G  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  -  ( G `  t ) ) )  e.  A )
 
Theoremstoweidlem34 27152* This lemma proves that for all  t in  T there is a  j as in the proof of [BrosowskiDeutsh] p. 91 (at the bottom of page 91 and at the top of page 92): (j-4/3) * ε < f(t) <= (j-1/3) * ε , g(t) < (j+1/3) * ε, and g(t) > (j-4/3) * ε. Here  E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t F   &    |- 
 F/ j ph   &    |-  F/ t ph   &    |-  D  =  ( j  e.  (
 0 ... N )  |->  { t  e.  T  |  ( F `  t ) 
 <_  ( ( j  -  ( 1  /  3
 ) )  x.  E ) } )   &    |-  B  =  ( j  e.  ( 0
 ... N )  |->  { t  e.  T  |  ( ( j  +  ( 1  /  3
 ) )  x.  E )  <_  ( F `  t ) } )   &    |-  J  =  ( t  e.  T  |->  { j  e.  ( 1
 ... N )  |  t  e.  ( D `
  j ) }
 )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  T  e.  _V )   &    |-  ( ph  ->  F : T --> RR )   &    |-  ( ( ph  /\  t  e.  T ) 
 ->  0  <_  ( F `
  t ) )   &    |-  ( ( ph  /\  t  e.  T )  ->  ( F `  t )  < 
 ( ( N  -  1 )  x.  E ) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  E  <  ( 1  / 
 3 ) )   &    |-  (
 ( ph  /\  j  e.  ( 0 ... N ) )  ->  ( X `
  j ) : T --> RR )   &    |-  (
 ( ph  /\  j  e.  ( 0 ... N )  /\  t  e.  T )  ->  0  <_  (
 ( X `  j
 ) `  t )
 )   &    |-  ( ( ph  /\  j  e.  ( 0 ... N )  /\  t  e.  T )  ->  ( ( X `
  j ) `  t )  <_  1 )   &    |-  ( ( ph  /\  j  e.  ( 0 ... N )  /\  t  e.  ( D `  j ) ) 
 ->  ( ( X `  j ) `  t
 )  <  ( E  /  N ) )   &    |-  (
 ( ph  /\  j  e.  ( 0 ... N )  /\  t  e.  ( B `  j ) ) 
 ->  ( 1  -  ( E  /  N ) )  <  ( ( X `
  j ) `  t ) )   =>    |-  ( ph  ->  A. t  e.  T  E. j  e.  RR  (
 ( ( ( j  -  ( 4  / 
 3 ) )  x.  E )  <  ( F `  t )  /\  ( F `  t ) 
 <_  ( ( j  -  ( 1  /  3
 ) )  x.  E ) )  /\  ( ( ( t  e.  T  |->  sum_
 i  e.  ( 0
 ... N ) ( E  x.  ( ( X `  i ) `
  t ) ) ) `  t )  <  ( ( j  +  ( 1  / 
 3 ) )  x.  E )  /\  (
 ( j  -  (
 4  /  3 )
 )  x.  E )  <  ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... N ) ( E  x.  ( ( X `  i ) `  t
 ) ) ) `  t ) ) ) )
 
Theoremstoweidlem35 27153* This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here  ( q `  i ) is used to represent p(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ t ph   &    |-  F/ w ph   &    |-  F/ h ph   &    |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  < 
 ( h `  t
 ) } }   &    |-  G  =  ( w  e.  X  |->  { h  e.  Q  |  w  =  { t  e.  T  |  0  < 
 ( h `  t
 ) } } )   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  X  e.  Fin )   &    |-  ( ph  ->  X 
 C_  W )   &    |-  ( ph  ->  ( T  \  U )  C_  U. X )   &    |-  ( ph  ->  ( T  \  U )  =/=  (/) )   =>    |-  ( ph  ->  E. m E. q ( m  e. 
 NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
 \  U ) E. i  e.  ( 1 ... m ) 0  < 
 ( ( q `  i ) `  t
 ) ) ) )
 
Theoremstoweidlem36 27154* This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that pt ( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Z is used for t0 , S is used for t e. T - U , h is used for pt . G is used for (ht)^2 and the final h is a normalized version of G ( divided by it's norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ h Q   &    |-  F/_ t H   &    |-  F/_ t F   &    |-  F/_ t G   &    |- 
 F/ t ph   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  T  =  U. J   &    |-  G  =  ( t  e.  T  |->  ( ( F `  t
 )  x.  ( F `
  t ) ) )   &    |-  N  =  sup ( ran  G ,  RR ,  <  )   &    |-  H  =  ( t  e.  T  |->  ( ( G `  t
 )  /  N )
 )   &    |-  ( ph  ->  J  e.  Comp )   &    |-  ( ph  ->  A 
 C_  ( J  Cn  K ) )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ph  ->  S  e.  T )   &    |-  ( ph  ->  Z  e.  T )   &    |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  ( F `  S )  =/=  ( F `  Z ) )   &    |-  ( ph  ->  ( F `  Z )  =  0 )   =>    |-  ( ph  ->  E. h ( h  e.  Q  /\  0  < 
 ( h `  S ) ) )
 
Theoremstoweidlem37 27155* This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p,  ( G `  i ) is used for p(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `
  i ) `  t ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  G : ( 1 ...
 M ) --> Q )   &    |-  ( ( ph  /\  f  e.  A )  ->  f : T --> RR )   &    |-  ( ph  ->  Z  e.  T )   =>    |-  ( ph  ->  ( P `  Z )  =  0 )
 
Theoremstoweidlem38 27156* This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p,  ( G `  i ) is used for p(t_i). (Contributed by GlaucoSiliprandi, 20-Apr-2017.)
 |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `
  i ) `  t ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  G : ( 1 ...
 M ) --> Q )   &    |-  ( ( ph  /\  f  e.  A )  ->  f : T --> RR )   =>    |-  ( ( ph  /\  S  e.  T ) 
 ->  ( 0  <_  ( P `  S )  /\  ( P `  S ) 
 <_  1 ) )
 
Theoremstoweidlem39 27157* This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91: assuming that  r is a finite subset of  W,  x indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ xi ≤ 1, xi < ε / m on V(ti), and xi > 1 - ε / m on  B. Here  D is used to represent A in the paper's Lemma 2 (because  A is used for the subalgebra),  M is used to represent m in the paper,  E is used to represent ε, and vi is used to represent V(ti).  W is just a local definition, used to shorten statements. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ h ph   &    |-  F/ t ph   &    |-  F/ w ph   &    |-  U  =  ( T  \  B )   &    |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t ) 
 /\  ( h `  t )  <_  1 ) }   &    |-  W  =  { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  ( A. t  e.  T  ( 0  <_  ( h `  t ) 
 /\  ( h `  t )  <_  1 ) 
 /\  A. t  e.  w  ( h `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e )  < 
 ( h `  t
 ) ) }   &    |-  ( ph  ->  r  e.  ( ~P W  i^i  Fin )
 )   &    |-  ( ph  ->  D  C_ 
 U. r )   &    |-  ( ph  ->  D  =/=  (/) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  B  C_  T )   &    |-  ( ph  ->  W  e.  _V )   &    |-  ( ph  ->  A  e.  _V )   =>    |-  ( ph  ->  E. m  e.  NN  E. v ( v : ( 1
 ... m ) --> W  /\  D  C_  U. ran  v  /\  E. x ( x : ( 1 ... m ) --> Y  /\  A. i  e.  ( 1
 ... m ) (
 A. t  e.  (
 v `  i )
 ( ( x `  i ) `  t
 )  <  ( E  /  m )  /\  A. t  e.  B  (
 1  -  ( E 
 /  m ) )  <  ( ( x `
  i ) `  t ) ) ) ) )
 
Theoremstoweidlem40 27158* This lemma proves that qn is in the subalgebra, as in the prove of Lemma 1 in [BrosowskiDeutsh] p. 90. Q is used to represent qn in the paper, N is used to represent n in the paper, and M is used to represent k^n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t P   &    |- 
 F/ t ph   &    |-  Q  =  ( t  e.  T  |->  ( ( 1  -  (
 ( P `  t
 ) ^ N ) ) ^ M ) )   &    |-  F  =  ( t  e.  T  |->  ( 1  -  ( ( P `  t ) ^ N ) ) )   &    |-  G  =  ( t  e.  T  |->  1 )   &    |-  H  =  ( t  e.  T  |->  ( ( P `  t
 ) ^ N ) )   &    |-  ( ph  ->  P  e.  A )   &    |-  ( ph  ->  P : T --> RR )   &    |-  ( ( ph  /\  f  e.  A ) 
 ->  f : T --> RR )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  Q  e.  A )
 
Theoremstoweidlem41 27159* This lemma is used to prove that there exists x as in Lemma 1 of [BrosowskiDeutsh] p. 90: 0 <= x(t) <= 1 for all t in T, x(t) < epsilon for all t in V, x(t) > 1 - epsilon for all t in T \ U. Here we prove the very last step of the proof of Lemma 1: "The result follows from taking x = 1 - qn";. Here  E is used to represent ε in the paper, and  y to represent qn in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ t ph   &    |-  X  =  ( t  e.  T  |->  ( 1  -  ( y `
  t ) ) )   &    |-  F  =  ( t  e.  T  |->  1 )   &    |-  V  C_  T   &    |-  ( ph  ->  y  e.  A )   &    |-  ( ph  ->  y : T --> RR )   &    |-  (
 ( ph  /\  f  e.  A )  ->  f : T --> RR )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  w  e.  RR )  ->  (
 t  e.  T  |->  w )  e.  A )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( y `  t )  /\  (
 y `  t )  <_  1 ) )   &    |-  ( ph  ->  A. t  e.  V  ( 1  -  E )  <  ( y `  t ) )   &    |-  ( ph  ->  A. t  e.  ( T  \  U ) ( y `  t )  <  E )   =>    |-  ( ph  ->  E. x  e.  A  (
 A. t  e.  T  ( 0  <_  ( x `  t )  /\  ( x `  t ) 
 <_  1 )  /\  A. t  e.  V  ( x `  t )  <  E  /\  A. t  e.  ( T  \  U ) ( 1  -  E )  <  ( x `
  t ) ) )
 
Theoremstoweidlem42 27160* This lemma is used to prove that  x built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x > 1 - ε on B. Here  X is used to represent  x in the paper, and E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ i ph   &    |-  F/ t ph   &    |-  F/_ t Y   &    |-  P  =  ( f  e.  Y ,  g  e.  Y  |->  ( t  e.  T  |->  ( ( f `
  t )  x.  ( g `  t
 ) ) ) )   &    |-  X  =  (  seq  1 ( P ,  U ) `  M )   &    |-  F  =  ( t  e.  T  |->  ( i  e.  ( 1 ...
 M )  |->  ( ( U `  i ) `
  t ) ) )   &    |-  Z  =  ( t  e.  T  |->  ( 
 seq  1 (  x. 
 ,  ( F `  t ) ) `  M ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  U : ( 1 ...
 M ) --> Y )   &    |-  ( ( ph  /\  i  e.  ( 1 ... M ) )  ->  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( U `  i ) `
  t ) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  E  <  ( 1  / 
 3 ) )   &    |-  (
 ( ph  /\  f  e.  Y )  ->  f : T --> RR )   &    |-  (
 ( ph  /\  f  e.  Y  /\  g  e.  Y )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  Y )   &    |-  ( ph  ->  T  e.  _V )   &    |-  ( ph  ->  B 
 C_  T )   =>    |-  ( ph  ->  A. t  e.  B  ( 1  -  E )  <  ( X `  t ) )
 
Theoremstoweidlem43 27161* This lemma is used to prove the existence of a function pt as in Lemma 1 of [BrosowskiDeutsh] p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function pt in the subalgebra, such that pt( t0 ) = 0 , pt ( t ) > 0, and 0 <= pt <= 1. Hera Z is used for t0 , S is used for t e. T - U , h is used for pt. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ g ph   &    |-  F/ t ph   &    |-  F/_ h Q   &    |-  K  =  ( topGen `  ran  (,) )   &    |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  T  =  U. J   &    |-  ( ph  ->  J  e.  Comp )   &    |-  ( ph  ->  A 
 C_  ( J  Cn  K ) )   &    |-  (
 ( ph  /\  f  e.  A  /\  l  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( l `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  l  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( l `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. g  e.  A  ( g `  r
 )  =/=  ( g `  t ) )   &    |-  ( ph  ->  U  e.  J )   &    |-  ( ph  ->  Z  e.  U )   &    |-  ( ph  ->  S  e.  ( T  \  U ) )   =>    |-  ( ph  ->  E. h ( h  e.  Q  /\  0  < 
 ( h `  S ) ) )
 
Theoremstoweidlem44 27162* This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ j ph   &    |-  F/ t ph   &    |-  K  =  ( topGen `  ran  (,) )   &    |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  P  =  ( t  e.  T  |->  ( ( 1  /  M )  x.  sum_ i  e.  ( 1 ... M ) ( ( G `
  i ) `  t ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  G : ( 1 ...
 M ) --> Q )   &    |-  ( ph  ->  A. t  e.  ( T  \  U ) E. j  e.  (
 1 ... M ) 0  <  ( ( G `
  j ) `  t ) )   &    |-  T  =  U. J   &    |-  ( ph  ->  A 
 C_  ( J  Cn  K ) )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ph  ->  Z  e.  T )   =>    |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  ( p `  t ) 
 /\  ( p `  t )  <_  1 ) 
 /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  <  ( p `  t ) ) )
 
Theoremstoweidlem45 27163* This lemma proves that, given an appropriate  K (in another theorem we prove such a  K exists), there exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 ( at the top of page 91): 0 <= qn <= 1 , qn < ε on T \ U, and qn > 1 - ε on  V. We use y to represent the final qn in the paper (the one with n large enough),  N to represent  n in the paper,  K to represent  k,  D to represent δ,  E to represent ε, and  P to represent  p. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t P   &    |- 
 F/ t ph   &    |-  V  =  {
 t  e.  T  |  ( P `  t )  <  ( D  / 
 2 ) }   &    |-  Q  =  ( t  e.  T  |->  ( ( 1  -  ( ( P `  t ) ^ N ) ) ^ ( K ^ N ) ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  NN )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  D  <  1 )   &    |-  ( ph  ->  P  e.  A )   &    |-  ( ph  ->  P : T --> RR )   &    |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t ) 
 <_  1 ) )   &    |-  ( ph  ->  A. t  e.  ( T  \  U ) D 
 <_  ( P `  t
 ) )   &    |-  ( ( ph  /\  f  e.  A ) 
 ->  f : T --> RR )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  ( 1  -  E )  <  ( 1  -  ( ( ( K  x.  D )  / 
 2 ) ^ N ) ) )   &    |-  ( ph  ->  ( 1  /  ( ( K  x.  D ) ^ N ) )  <  E )   =>    |-  ( ph  ->  E. y  e.  A  ( A. t  e.  T  ( 0  <_  ( y `  t
 )  /\  ( y `  t )  <_  1
 )  /\  A. t  e.  V  ( 1  -  E )  <  ( y `
  t )  /\  A. t  e.  ( T 
 \  U ) ( y `  t )  <  E ) )
 
Theoremstoweidlem46 27164* This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t U   &    |-  F/_ h Q   &    |-  F/ q ph   &    |-  F/ t ph   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  < 
 ( h `  t
 ) } }   &    |-  T  =  U. J   &    |-  ( ph  ->  J  e.  Comp )   &    |-  ( ph  ->  A 
 C_  ( J  Cn  K ) )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. q  e.  A  ( q `  r
 )  =/=  ( q `  t ) )   &    |-  ( ph  ->  U  e.  J )   &    |-  ( ph  ->  Z  e.  U )   &    |-  ( ph  ->  T  e.  _V )   =>    |-  ( ph  ->  ( T  \  U ) 
 C_  U. W )
 
Theoremstoweidlem47 27165* Subtracting a constant from a real continuous function gives another continuous function. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t F   &    |-  F/_ t S   &    |-  F/ t ph   &    |-  T  =  U. J   &    |-  G  =  ( T  X.  { -u S } )   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  ( ph  ->  J  e.  Top )   &    |-  C  =  ( J  Cn  K )   &    |-  ( ph  ->  F  e.  C )   &    |-  ( ph  ->  S  e.  RR )   =>    |-  ( ph  ->  (
 t  e.  T  |->  ( ( F `  t
 )  -  S ) )  e.  C )
 
Theoremstoweidlem48 27166* This lemma is used to prove that  x built as in Lemma 2 of [BrosowskiDeutsh] p. 91, is such that x < ε on  A. Here  X is used to represent  x in the paper,  E is used to represent ε in the paper, and  D is used to represent  A in the paper (because  A is always used to represent the subalgebra). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ i ph   &    |-  F/ t ph   &    |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) }   &    |-  P  =  ( f  e.  Y ,  g  e.  Y  |->  ( t  e.  T  |->  ( ( f `  t )  x.  (
 g `  t )
 ) ) )   &    |-  X  =  (  seq  1 ( P ,  U ) `
  M )   &    |-  F  =  ( t  e.  T  |->  ( i  e.  (
 1 ... M )  |->  ( ( U `  i
 ) `  t )
 ) )   &    |-  Z  =  ( t  e.  T  |->  ( 
 seq  1 (  x. 
 ,  ( F `  t ) ) `  M ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  W : ( 1 ...
 M ) --> V )   &    |-  ( ph  ->  U :
 ( 1 ... M )
 --> Y )   &    |-  ( ph  ->  D 
 C_  U. ran  W )   &    |-  ( ph  ->  D  C_  T )   &    |-  ( ( ph  /\  i  e.  ( 1 ... M ) )  ->  A. t  e.  ( W `  i
 ) ( ( U `
  i ) `  t )  <  E )   &    |-  ( ph  ->  T  e.  _V )   &    |-  ( ( ph  /\  f  e.  A ) 
 ->  f : T --> RR )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ph  ->  E  e.  RR+ )   =>    |-  ( ph  ->  A. t  e.  D  ( X `  t )  <  E )
 
Theoremstoweidlem49 27167* There exists a function qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91 (at the top of page 91): 0 <= qn <= 1 , qn < ε on  T  \  U, and qn > 1 - ε on  V. Here y is used to represent the final qn in the paper (the one with n large enough),  N represents  n in the paper,  K represents  k,  D represents δ,  E represents ε, and  P represents  p. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t P   &    |- 
 F/ t ph   &    |-  V  =  {
 t  e.  T  |  ( P `  t )  <  ( D  / 
 2 ) }   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  D  <  1 )   &    |-  ( ph  ->  P  e.  A )   &    |-  ( ph  ->  P : T --> RR )   &    |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t )  <_ 
 1 ) )   &    |-  ( ph  ->  A. t  e.  ( T  \  U ) D 
 <_  ( P `  t
 ) )   &    |-  ( ( ph  /\  f  e.  A ) 
 ->  f : T --> RR )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ph  ->  E  e.  RR+ )   =>    |-  ( ph  ->  E. y  e.  A  ( A. t  e.  T  ( 0  <_  ( y `  t
 )  /\  ( y `  t )  <_  1
 )  /\  A. t  e.  V  ( 1  -  E )  <  ( y `
  t )  /\  A. t  e.  ( T 
 \  U ) ( y `  t )  <  E ) )
 
Theoremstoweidlem50 27168* This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t U   &    |- 
 F/ t ph   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  < 
 ( h `  t
 ) } }   &    |-  T  =  U. J   &    |-  C  =  ( J  Cn  K )   &    |-  ( ph  ->  J  e.  Comp
 )   &    |-  ( ph  ->  A  C_  C )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  (
 g `  t )
 ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. q  e.  A  ( q `  r
 )  =/=  ( q `  t ) )   &    |-  ( ph  ->  U  e.  J )   &    |-  ( ph  ->  Z  e.  U )   =>    |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
 C_  U. u ) )
 
Theoremstoweidlem51 27169* There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here  D is used to represent  A in the paper, because here  A is used for the subalgebra of functions.  E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ i ph   &    |-  F/ t ph   &    |-  F/ w ph   &    |-  F/_ w V   &    |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) }   &    |-  P  =  ( f  e.  Y ,  g  e.  Y  |->  ( t  e.  T  |->  ( ( f `  t )  x.  (
 g `  t )
 ) ) )   &    |-  X  =  (  seq  1 ( P ,  U ) `
  M )   &    |-  F  =  ( t  e.  T  |->  ( i  e.  (
 1 ... M )  |->  ( ( U `  i
 ) `  t )
 ) )   &    |-  Z  =  ( t  e.  T  |->  ( 
 seq  1 (  x. 
 ,  ( F `  t ) ) `  M ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  W : ( 1 ...
 M ) --> V )   &    |-  ( ph  ->  U :
 ( 1 ... M )
 --> Y )   &    |-  ( ( ph  /\  w  e.  V ) 
 ->  w  C_  T )   &    |-  ( ph  ->  D  C_  U. ran  W )   &    |-  ( ph  ->  D 
 C_  T )   &    |-  ( ph  ->  B  C_  T )   &    |-  ( ( ph  /\  i  e.  ( 1 ... M ) )  ->  A. t  e.  ( W `  i
 ) ( ( U `
  i ) `  t )  <  ( E 
 /  M ) )   &    |-  ( ( ph  /\  i  e.  ( 1 ... M ) )  ->  A. t  e.  B  ( 1  -  ( E  /  M ) )  <  ( ( U `  i ) `
  t ) )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A )  ->  f : T --> RR )   &    |-  ( ph  ->  T  e.  _V )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  E  <  ( 1  / 
 3 ) )   =>    |-  ( ph  ->  E. x ( x  e.  A  /\  ( A. t  e.  T  (
 0  <_  ( x `  t )  /\  ( x `  t )  <_ 
 1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E )  <  ( x `
  t ) ) ) )
 
Theoremstoweidlem52 27170* There exists a neighborood V as in Lemma 1 of [BrosowskiDeutsh] p. 90. Here Z is used to represent t0 in the paper, and v is used to represent V in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t U   &    |- 
 F/ t ph   &    |-  F/_ t P   &    |-  K  =  ( topGen `  ran  (,) )   &    |-  V  =  { t  e.  T  |  ( P `  t
 )  <  ( D  /  2 ) }   &    |-  T  =  U. J   &    |-  C  =  ( J  Cn  K )   &    |-  ( ph  ->  A  C_  C )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  a  e.  RR )  ->  (
 t  e.  T  |->  a )  e.  A )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  D  <  1 )   &    |-  ( ph  ->  U  e.  J )   &    |-  ( ph  ->  Z  e.  U )   &    |-  ( ph  ->  P  e.  A )   &    |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t ) 
 <_  1 ) )   &    |-  ( ph  ->  ( P `  Z )  =  0
 )   &    |-  ( ph  ->  A. t  e.  ( T  \  U ) D  <_  ( P `
  t ) )   =>    |-  ( ph  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  ( 0  <_  ( x `  t ) 
 /\  ( x `  t )  <_  1 ) 
 /\  A. t  e.  v  ( x `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e )  < 
 ( x `  t
 ) ) ) )
 
Theoremstoweidlem53 27171* This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t U   &    |- 
 F/ t ph   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  < 
 ( h `  t
 ) } }   &    |-  T  =  U. J   &    |-  C  =  ( J  Cn  K )   &    |-  ( ph  ->  J  e.  Comp
 )   &    |-  ( ph  ->  A  C_  C )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  (
 g `  t )
 ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. q  e.  A  ( q `  r
 )  =/=  ( q `  t ) )   &    |-  ( ph  ->  U  e.  J )   &    |-  ( ph  ->  ( T  \  U )  =/=  (/) )   &    |-  ( ph  ->  Z  e.  U )   =>    |-  ( ph  ->  E. p  e.  A  (
 A. t  e.  T  ( 0  <_  ( p `  t )  /\  ( p `  t ) 
 <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  <  ( p `  t ) ) )
 
Theoremstoweidlem54 27172* There exists a function  x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. Here  D is used to represent  A in the paper, because here  A is used for the subalgebra of functions.  E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/ i ph   &    |-  F/ t ph   &    |-  F/ y ph   &    |-  F/ w ph   &    |-  T  =  U. J   &    |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) }   &    |-  P  =  ( f  e.  Y ,  g  e.  Y  |->  ( t  e.  T  |->  ( ( f `  t )  x.  (
 g `  t )
 ) ) )   &    |-  F  =  ( t  e.  T  |->  ( i  e.  (
 1 ... M )  |->  ( ( y `  i
 ) `  t )
 ) )   &    |-  Z  =  ( t  e.  T  |->  ( 
 seq  1 (  x. 
 ,  ( F `  t ) ) `  M ) )   &    |-  V  =  { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  (
 A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 )  /\  A. t  e.  w  ( h `  t )  < 
 e  /\  A. t  e.  ( T  \  U ) ( 1  -  e )  <  ( h `
  t ) ) }   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
 g `  t )
 ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A )  ->  f : T --> RR )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  W : ( 1 ...
 M ) --> V )   &    |-  ( ph  ->  B  C_  T )   &    |-  ( ph  ->  D  C_ 
 U. ran  W )   &    |-  ( ph  ->  D  C_  T )   &    |-  ( ph  ->  E. y
 ( y : ( 1 ... M ) --> Y  /\  A. i  e.  ( 1 ... M ) ( A. t  e.  ( W `  i
 ) ( ( y `
  i ) `  t )  <  ( E 
 /  M )  /\  A. t  e.  B  ( 1  -  ( E 
 /  M ) )  <  ( ( y `
  i ) `  t ) ) ) )   &    |-  ( ph  ->  T  e.  _V )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  E  <  ( 1  /  3
 ) )   =>    |-  ( ph  ->  E. x  e.  A  ( A. t  e.  T  ( 0  <_  ( x `  t ) 
 /\  ( x `  t )  <_  1 ) 
 /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  (
 1  -  E )  <  ( x `  t ) ) )
 
Theoremstoweidlem55 27173* This lemma proves the existence of a function p as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. Here Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t U   &    |- 
 F/ t ph   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  ( ph  ->  J  e.  Comp )   &    |-  T  =  U. J   &    |-  C  =  ( J  Cn  K )   &    |-  ( ph  ->  A  C_  C )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  (
 g `  t )
 ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. q  e.  A  ( q `  r
 )  =/=  ( q `  t ) )   &    |-  ( ph  ->  U  e.  J )   &    |-  ( ph  ->  Z  e.  U )   &    |-  Q  =  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) ) }   &    |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  < 
 ( h `  t
 ) } }   =>    |-  ( ph  ->  E. p  e.  A  (
 A. t  e.  T  ( 0  <_  ( p `  t )  /\  ( p `  t ) 
 <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  <  ( p `  t ) ) )
 
Theoremstoweidlem56 27174* This theorem proves Lemma 1 in [BrosowskiDeutsh] p. 90. Here  Z is used to represent t0 in the paper,  v is used to represent  V in the paper, and  e is used to represent ε (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t U   &    |- 
 F/ t ph   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  ( ph  ->  J  e.  Comp )   &    |-  T  =  U. J   &    |-  C  =  ( J  Cn  K )   &    |-  ( ph  ->  A  C_  C )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  (
 g `  t )
 ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  y  e.  RR )  ->  (
 t  e.  T  |->  y )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. q  e.  A  ( q `  r
 )  =/=  ( q `  t ) )   &    |-  ( ph  ->  U  e.  J )   &    |-  ( ph  ->  Z  e.  U )   =>    |-  ( ph  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  ( 0  <_  ( x `  t ) 
 /\  ( x `  t )  <_  1 ) 
 /\  A. t  e.  v  ( x `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e )  < 
 ( x `  t
 ) ) ) )
 
Theoremstoweidlem57 27175* There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. In this theorem, it is proven the non trivial case (the closed set D is nonempty). Here D is used to represent A in the paper, because the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t D   &    |-  F/_ t U   &    |-  F/ t ph   &    |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 ) }   &    |-  V  =  { w  e.  J  |  A. e  e.  RR+  E. h  e.  A  (
 A. t  e.  T  ( 0  <_  ( h `  t )  /\  ( h `  t ) 
 <_  1 )  /\  A. t  e.  w  ( h `  t )  < 
 e  /\  A. t  e.  ( T  \  U ) ( 1  -  e )  <  ( h `
  t ) ) }   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  T  =  U. J   &    |-  C  =  ( J  Cn  K )   &    |-  U  =  ( T  \  B )   &    |-  ( ph  ->  J  e.  Comp )   &    |-  ( ph  ->  A 
 C_  C )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  a  e.  RR )  ->  (
 t  e.  T  |->  a )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. q  e.  A  ( q `  r
 )  =/=  ( q `  t ) )   &    |-  ( ph  ->  B  e.  ( Clsd `  J ) )   &    |-  ( ph  ->  D  e.  ( Clsd `  J )
 )   &    |-  ( ph  ->  ( B  i^i  D )  =  (/) )   &    |-  ( ph  ->  D  =/=  (/) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  E  <  ( 1  / 
 3 ) )   =>    |-  ( ph  ->  E. x  e.  A  (
 A. t  e.  T  ( 0  <_  ( x `  t )  /\  ( x `  t ) 
 <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E )  <  ( x `
  t ) ) )
 
Theoremstoweidlem58 27176* This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 91. Here D is used to represent the set A of Lemma 2, because here the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t D   &    |-  F/_ t U   &    |-  F/ t ph   &    |-  K  =  ( topGen `  ran  (,) )   &    |-  T  =  U. J   &    |-  C  =  ( J  Cn  K )   &    |-  ( ph  ->  J  e.  Comp
 )   &    |-  ( ph  ->  A  C_  C )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  (
 g `  t )
 ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  a  e.  RR )  ->  (
 t  e.  T  |->  a )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. q  e.  A  ( q `  r
 )  =/=  ( q `  t ) )   &    |-  ( ph  ->  B  e.  ( Clsd `  J ) )   &    |-  ( ph  ->  D  e.  ( Clsd `  J )
 )   &    |-  ( ph  ->  ( B  i^i  D )  =  (/) )   &    |-  U  =  ( T  \  B )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  E  <  ( 1  / 
 3 ) )   =>    |-  ( ph  ->  E. x  e.  A  (
 A. t  e.  T  ( 0  <_  ( x `  t )  /\  ( x `  t ) 
 <_  1 )  /\  A. t  e.  D  ( x `  t )  <  E  /\  A. t  e.  B  ( 1  -  E )  <  ( x `
  t ) ) )
 
Theoremstoweidlem59 27177* This lemma proves that there exists a function  x as in the proof in [BrosowskiDeutsh] p. 91, after Lemma 2: xj is in the subalgebra, 0 <= xj <= 1, xj < ε / n on Aj (meaning A in the paper), xj > 1 - \epslon / n on Bj. Here  D is used to represent A in the paper (because A is used for the subalgebra of functions),  E is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t F   &    |- 
 F/ t ph   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  T  =  U. J   &    |-  C  =  ( J  Cn  K )   &    |-  D  =  ( j  e.  ( 0 ... N )  |->  { t  e.  T  |  ( F `  t
 )  <_  ( (
 j  -  ( 1 
 /  3 ) )  x.  E ) }
 )   &    |-  B  =  ( j  e.  ( 0 ...
 N )  |->  { t  e.  T  |  ( ( j  +  ( 1 
 /  3 ) )  x.  E )  <_  ( F `  t ) } )   &    |-  Y  =  {
 y  e.  A  |  A. t  e.  T  ( 0  <_  (
 y `  t )  /\  ( y `  t
 )  <_  1 ) }   &    |-  H  =  ( j  e.  ( 0 ...
 N )  |->  { y  e.  Y  |  ( A. t  e.  ( D `  j ) ( y `
  t )  < 
 ( E  /  N )  /\  A. t  e.  ( B `  j
 ) ( 1  -  ( E  /  N ) )  <  ( y `
  t ) ) } )   &    |-  ( ph  ->  J  e.  Comp )   &    |-  ( ph  ->  A 
 C_  C )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  y  e.  RR )  ->  (
 t  e.  T  |->  y )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. q  e.  A  ( q `  r
 )  =/=  ( q `  t ) )   &    |-  ( ph  ->  F  e.  C )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  E  <  ( 1  / 
 3 ) )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  E. x ( x : ( 0
 ... N ) --> A  /\  A. j  e.  ( 0
 ... N ) (
 A. t  e.  T  ( 0  <_  (
 ( x `  j
 ) `  t )  /\  ( ( x `  j ) `  t
 )  <_  1 )  /\  A. t  e.  ( D `  j ) ( ( x `  j
 ) `  t )  <  ( E  /  N )  /\  A. t  e.  ( B `  j
 ) ( 1  -  ( E  /  N ) )  <  ( ( x `  j ) `
  t ) ) ) )
 
Theoremstoweidlem60 27178* This lemma proves that there exists a function g as in the proof in [BrosowskiDeutsh] p. 91 (this parte of the proof actually spans through pages 91-92): g is in the subalgebra, and for all  t in  T, there is a  j such that (j-4/3)*ε < f(t) <= (j-1/3)*ε and (j-4/3)*ε < g(t) < (j+1/3)*ε. Here  F is used to represent f in the paper, and  E is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t F   &    |- 
 F/ t ph   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  T  =  U. J   &    |-  C  =  ( J  Cn  K )   &    |-  D  =  ( j  e.  ( 0 ... n )  |->  { t  e.  T  |  ( F `  t
 )  <_  ( (
 j  -  ( 1 
 /  3 ) )  x.  E ) }
 )   &    |-  B  =  ( j  e.  ( 0 ... n )  |->  { t  e.  T  |  ( ( j  +  ( 1 
 /  3 ) )  x.  E )  <_  ( F `  t ) } )   &    |-  ( ph  ->  J  e.  Comp )   &    |-  ( ph  ->  T  =/=  (/) )   &    |-  ( ph  ->  A 
 C_  C )   &    |-  (
 ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  y  e.  RR )  ->  (
 t  e.  T  |->  y )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. q  e.  A  ( q `  r
 )  =/=  ( q `  t ) )   &    |-  ( ph  ->  F  e.  C )   &    |-  ( ph  ->  A. t  e.  T  0  <_  ( F `  t ) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  E  <  ( 1  / 
 3 ) )   =>    |-  ( ph  ->  E. g  e.  A  A. t  e.  T  E. j  e.  RR  ( ( ( ( j  -  (
 4  /  3 )
 )  x.  E )  <  ( F `  t )  /\  ( F `
  t )  <_  ( ( j  -  ( 1  /  3
 ) )  x.  E ) )  /\  ( ( g `  t )  <  ( ( j  +  ( 1  / 
 3 ) )  x.  E )  /\  (
 ( j  -  (
 4  /  3 )
 )  x.  E )  <  ( g `  t ) ) ) )
 
Theoremstoweidlem61 27179* This lemma proves that there exists a function  g as in the proof in [BrosowskiDeutsh] p. 92:  g is in the subalgebra, and for all  t in  T, abs( f(t) - g(t) ) < 2*ε. Here  F is used to represent f in the paper, and  E is used to represent ε. For this lemma there's the further assumption that the function  F to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t F   &    |- 
 F/ t ph   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  ( ph  ->  J  e.  Comp )   &    |-  T  =  U. J   &    |-  ( ph  ->  T  =/=  (/) )   &    |-  C  =  ( J  Cn  K )   &    |-  ( ph  ->  A  C_  C )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  (
 g `  t )
 ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. q  e.  A  ( q `  r
 )  =/=  ( q `  t ) )   &    |-  ( ph  ->  F  e.  C )   &    |-  ( ph  ->  A. t  e.  T  0  <_  ( F `  t ) )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  E  <  ( 1  / 
 3 ) )   =>    |-  ( ph  ->  E. g  e.  A  A. t  e.  T  ( abs `  ( ( g `
  t )  -  ( F `  t ) ) )  <  (
 2  x.  E ) )
 
Theoremstoweidlem62 27180* This theorem proves the Stone Weierstrass theorem for the non trivial case in which T is nonempty. The proof follows [BrosowskiDeutsh] p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t F   &    |- 
 F/ f ph   &    |-  F/ t ph   &    |-  H  =  ( t  e.  T  |->  ( ( F `  t )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )   &    |-  K  =  ( topGen `  ran  (,) )   &    |-  T  =  U. J   &    |-  ( ph  ->  J  e.  Comp )   &    |-  C  =  ( J  Cn  K )   &    |-  ( ph  ->  A  C_  C )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  +  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. q  e.  A  ( q `  r
 )  =/=  ( q `  t ) )   &    |-  ( ph  ->  F  e.  C )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  T  =/=  (/) )   &    |-  ( ph  ->  E  <  ( 1  / 
 3 ) )   =>    |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `
  t )  -  ( F `  t ) ) )  <  E )
 
Theoremstoweid 27181* This theorem proves the Stone-Weierstrass theorem for real valued functions: let  J be a compact topology on  T, and  C be the set of real continuous functions on  T. Assume that  A is a subalgebra of  C (closed under addition and multiplication of functions) containing constant functions and discriminating points (if  r and  t are distinct points in  T, then there exists a function  h in  A such that h(r) is distinct from h(t) ). Then, for any continuous function 
F and for any positive real  E, there exists a function  f in the subalgebra  A, such that  f approximates  F up to  E ( E represents the usual ε value). As a classical example, given any a,b reals, the closed interval  T  =  [
a ,  b ] could be taken, along with the subalgebra  A of real polynomials on  T, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on  [ a ,  b ]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  F/_ t F   &    |- 
 F/ t ph   &    |-  K  =  (
 topGen `  ran  (,) )   &    |-  ( ph  ->  J  e.  Comp )   &    |-  T  =  U. J   &    |-  C  =  ( J  Cn  K )   &    |-  ( ph  ->  A  C_  C )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  (
 g `  t )
 ) )  e.  A )   &    |-  ( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
 t  e.  T  |->  ( ( f `  t
 )  x.  ( g `
  t ) ) )  e.  A )   &    |-  ( ( ph  /\  x  e.  RR )  ->  (
 t  e.  T  |->  x )  e.  A )   &    |-  ( ( ph  /\  (
 r  e.  T  /\  t  e.  T  /\  r  =/=  t ) ) 
 ->  E. h  e.  A  ( h `  r )  =/=  ( h `  t ) )   &    |-  ( ph  ->  F  e.  C )   &    |-  ( ph  ->  E  e.  RR+ )   =>    |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  (
 ( f `  t
 )  -  ( F `
  t ) ) )  <  E )
 
Theoremstowei 27182* This theorem proves the Stone-Weierstrass theorem for real valued functions: let  J be a compact topology on  T, and  C be the set of real continuous functions on  T. Assume that  A is a subalgebra of  C (closed under addition and multiplication of functions) containing constant functions and discriminating points (if  r and  t are distinct points in  T, then there exists a function  h in  A such that h(r) is distinct from h(t) ). Then, for any continuous function 
F and for any positive real  E, there exists a function  f in the subalgebra  A, such that  f approximates  F up to  E ( E represents the usual ε value). As a classical example, given any a,b reals, the closed interval  T  =  [
a ,  b ] could be taken, along with the subalgebra  A of real polynomials on  T, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on  [ a ,  b ]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. The deduction version of this theorem is stoweid 27181: often times it will be better to use stoweid 27181 in other proofs (but this version is probably easier to be read and understood). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
 |-  K  =  ( topGen `  ran  (,) )   &    |-  J  e.  Comp   &    |-  T  =  U. J   &    |-  C  =  ( J  Cn  K )   &    |-  A  C_  C