HomeHome Metamath Proof Explorer
Theorem List (p. 284 of 315)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21491)
  Hilbert Space Explorer  Hilbert Space Explorer
(21492-23014)
  Users' Mathboxes  Users' Mathboxes
(23015-31422)
 

Theorem List for Metamath Proof Explorer - 28301-28400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembnj1174 28301 Technical lemma for bnj69 28308. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  C  =  (  trCl ( X ,  A ,  R )  i^i  B )   &    |-  E. z A. w ( ( ph  /\ 
 ps )  ->  (
 z  e.  C  /\  ( th  ->  ( w R z  ->  -.  w  e.  C ) ) ) )   &    |-  ( th  ->  ( w R z  ->  w  e.  trCl ( X ,  A ,  R ) ) )   =>    |-  E. z A. w ( ( ph  /\ 
 ps )  ->  (
 ( ph  /\  ps  /\  z  e.  C )  /\  ( th  ->  ( w R z  ->  -.  w  e.  B ) ) ) )
 
Theorembnj1175 28302 Technical lemma for bnj69 28308. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  C  =  (  trCl ( X ,  A ,  R )  i^i  B )   &    |-  ( ch 
 <->  ( ( R  FrSe  A 
 /\  X  e.  A  /\  z  e.  trCl ( X ,  A ,  R ) )  /\  ( R  FrSe  A  /\  z  e.  A )  /\  ( w  e.  A  /\  w R z ) ) )   &    |-  ( th  <->  ( ( R 
 FrSe  A  /\  X  e.  A  /\  z  e.  trCl ( X ,  A ,  R ) )  /\  ( R  FrSe  A  /\  z  e.  A )  /\  w  e.  A ) )   =>    |-  ( th  ->  ( w R z  ->  w  e.  trCl ( X ,  A ,  R )
 ) )
 
Theorembnj1176 28303* Technical lemma for bnj69 28308. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ps )  ->  ( R  Fr  A  /\  C  C_  A  /\  C  =/=  (/)  /\  C  e.  _V ) )   &    |-  ( ( R  Fr  A  /\  C  C_  A  /\  C  =/=  (/)  /\  C  e.  _V )  ->  E. z  e.  C  A. w  e.  C  -.  w R z )   =>    |-  E. z A. w ( ( ph  /\ 
 ps )  ->  (
 z  e.  C  /\  ( th  ->  ( w R z  ->  -.  w  e.  C ) ) ) )
 
Theorembnj1177 28304 Technical lemma for bnj69 28308. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  ( ps 
 <->  ( X  e.  B  /\  y  e.  B  /\  y R X ) )   &    |-  C  =  ( 
 trCl ( X ,  A ,  R )  i^i  B )   &    |-  ( ( ph  /\ 
 ps )  ->  R  FrSe  A )   &    |-  ( ( ph  /\ 
 ps )  ->  B  C_  A )   &    |-  ( ( ph  /\ 
 ps )  ->  X  e.  A )   =>    |-  ( ( ph  /\  ps )  ->  ( R  Fr  A  /\  C  C_  A  /\  C  =/=  (/)  /\  C  e.  _V ) )
 
Theorembnj1186 28305* Technical lemma for bnj69 28308. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  E. z A. w ( ( ph  /\ 
 ps )  ->  (
 z  e.  B  /\  ( w  e.  B  ->  -.  w R z ) ) )   =>    |-  ( ( ph  /\ 
 ps )  ->  E. z  e.  B  A. w  e.  B  -.  w R z )
 
Theorembnj1190 28306* Technical lemma for bnj69 28308. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  ( ph 
 <->  ( R  FrSe  A  /\  B  C_  A  /\  B  =/= 
 (/) ) )   &    |-  ( ps 
 <->  ( x  e.  B  /\  y  e.  B  /\  y R x ) )   =>    |-  ( ( ph  /\  ps )  ->  E. w  e.  B  A. z  e.  B  -.  z R w )
 
Theorembnj1189 28307* Technical lemma for bnj69 28308. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  ( ph 
 <->  ( R  FrSe  A  /\  B  C_  A  /\  B  =/= 
 (/) ) )   &    |-  ( ps 
 <->  ( x  e.  B  /\  y  e.  B  /\  y R x ) )   &    |-  ( ch  <->  A. y  e.  B  -.  y R x )   =>    |-  ( ph  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
 
18.24.3  The existence of a minimal element in certain classes
 
Theorembnj69 28308* Existence of a minimal element in certain classes: if  R is well-founded and set-like on 
A, then every non-empty subclass of  A has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  (
 ( R  FrSe  A  /\  B  C_  A  /\  B  =/= 
 (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
 
Theorembnj1228 28309* Existence of a minimal element in certain classes: if  R is well-founded and set-like on 
A, then every non-empty subclass of  A has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  ( w  e.  B  ->  A. x  w  e.  B )   =>    |-  ( ( R  FrSe  A 
 /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
 
18.24.4  Well-founded induction
 
Theorembnj1204 28310* Well-founded induction. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  ( ps 
 <-> 
 A. y  e.  A  ( y R x 
 ->  [. y  /  x ].
 ph ) )   =>    |-  ( ( R 
 FrSe  A  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  A. x  e.  A  ph )
 
Theorembnj1234 28311* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  Y  =  <. x ,  (
 f  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  C  =  { f  |  E. d  e.  B  ( f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  Z  =  <. x ,  (
 g  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  D  =  { g  |  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  Z ) ) }   =>    |-  C  =  D
 
Theorembnj1245 28312* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  D  =  ( dom  g  i^i 
 dom  h )   &    |-  E  =  { x  e.  D  |  ( g `  x )  =/=  ( h `  x ) }   &    |-  ( ph 
 <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )   &    |-  ( ps  <->  ( ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )   &    |-  Z  =  <. x ,  ( h  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  K  =  { h  |  E. d  e.  B  ( h  Fn  d  /\  A. x  e.  d  ( h `  x )  =  ( G `  Z ) ) }   =>    |-  ( ph  ->  dom  h  C_  A )
 
Theorembnj1256 28313* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  D  =  ( dom  g  i^i 
 dom  h )   &    |-  E  =  { x  e.  D  |  ( g `  x )  =/=  ( h `  x ) }   &    |-  ( ph 
 <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )   &    |-  ( ps  <->  ( ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )   =>    |-  ( ph  ->  E. d  e.  B  g  Fn  d )
 
Theorembnj1259 28314* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  D  =  ( dom  g  i^i 
 dom  h )   &    |-  E  =  { x  e.  D  |  ( g `  x )  =/=  ( h `  x ) }   &    |-  ( ph 
 <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )   &    |-  ( ps  <->  ( ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )   =>    |-  ( ph  ->  E. d  e.  B  h  Fn  d )
 
Theorembnj1253 28315* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  D  =  ( dom  g  i^i 
 dom  h )   &    |-  E  =  { x  e.  D  |  ( g `  x )  =/=  ( h `  x ) }   &    |-  ( ph 
 <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )   &    |-  ( ps  <->  ( ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )   =>    |-  ( ph  ->  E  =/=  (/) )
 
Theorembnj1279 28316* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  D  =  ( dom  g  i^i 
 dom  h )   &    |-  E  =  { x  e.  D  |  ( g `  x )  =/=  ( h `  x ) }   &    |-  ( ph 
 <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )   &    |-  ( ps  <->  ( ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )   =>    |-  ( ( x  e.  E  /\  A. y  e.  E  -.  y R x )  ->  (  pred ( x ,  A ,  R )  i^i  E )  =  (/) )
 
Theorembnj1286 28317* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  D  =  ( dom  g  i^i 
 dom  h )   &    |-  E  =  { x  e.  D  |  ( g `  x )  =/=  ( h `  x ) }   &    |-  ( ph 
 <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )   &    |-  ( ps  <->  ( ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )   =>    |-  ( ps  ->  pred
 ( x ,  A ,  R )  C_  D )
 
Theorembnj1280 28318* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  D  =  ( dom  g  i^i 
 dom  h )   &    |-  E  =  { x  e.  D  |  ( g `  x )  =/=  ( h `  x ) }   &    |-  ( ph 
 <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )   &    |-  ( ps  <->  ( ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )   &    |-  ( ps  ->  (  pred ( x ,  A ,  R )  i^i  E )  =  (/) )   =>    |-  ( ps  ->  (
 g  |`  pred ( x ,  A ,  R )
 )  =  ( h  |`  pred ( x ,  A ,  R )
 ) )
 
Theorembnj1296 28319* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  D  =  ( dom  g  i^i 
 dom  h )   &    |-  E  =  { x  e.  D  |  ( g `  x )  =/=  ( h `  x ) }   &    |-  ( ph 
 <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )   &    |-  ( ps  <->  ( ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )   &    |-  ( ps  ->  ( g  |`  pred
 ( x ,  A ,  R ) )  =  ( h  |`  pred ( x ,  A ,  R ) ) )   &    |-  Z  =  <. x ,  ( g  |`  pred ( x ,  A ,  R ) ) >.   &    |-  K  =  { g  |  E. d  e.  B  (
 g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  Z ) ) }   &    |-  W  =  <. x ,  ( h  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  L  =  { h  |  E. d  e.  B  ( h  Fn  d  /\  A. x  e.  d  ( h `  x )  =  ( G `  W ) ) }   =>    |-  ( ps  ->  ( g `  x )  =  ( h `  x ) )
 
Theorembnj1309 28320* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   =>    |-  ( w  e.  B  ->  A. x  w  e.  B )
 
Theorembnj1307 28321* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( w  e.  B  ->  A. x  w  e.  B )   =>    |-  ( w  e.  C  ->  A. x  w  e.  C )
 
Theorembnj1311 28322* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  D  =  ( dom  g  i^i 
 dom  h )   =>    |-  ( ( R 
 FrSe  A  /\  g  e.  C  /\  h  e.  C )  ->  (
 g  |`  D )  =  ( h  |`  D ) )
 
Theorembnj1318 28323 Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  ( X  =  Y  ->  trCl
 ( X ,  A ,  R )  =  trCl ( Y ,  A ,  R ) )
 
Theorembnj1326 28324* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  D  =  ( dom  g  i^i 
 dom  h )   =>    |-  ( ( R 
 FrSe  A  /\  g  e.  C  /\  h  e.  C )  ->  (
 g  |`  D )  =  ( h  |`  D ) )
 
Theorembnj1321 28325* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   =>    |-  ( ( R  FrSe  A 
 /\  E. f ta )  ->  E! f ta )
 
Theorembnj1364 28326 Property of  FrSe. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  ( R  FrSe  A  ->  R  Se  A )
 
Theorembnj1371 28327* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  ( ta'  <->  ( f  e.  C  /\  dom  f  =  ( {
 y }  u.  trCl ( y ,  A ,  R ) ) ) )   =>    |-  ( f  e.  H  ->  Fun  f )
 
Theorembnj1373 28328* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  ( ta'  <->  [. y  /  x ].
 ta )   =>    |-  ( ta'  <->  ( f  e.  C  /\  dom  f  =  ( { y }  u.  trCl ( y ,  A ,  R ) ) ) )
 
Theorembnj1374 28329* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   =>    |-  ( f  e.  H  ->  f  e.  C )
 
Theorembnj1384 28330* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   =>    |-  ( R  FrSe  A  ->  Fun  P )
 
Theorembnj1388 28331* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   =>    |-  ( ch  ->  A. y  e.  pred  ( x ,  A ,  R ) E. f ta' )
 
Theorembnj1398 28332* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  ( th 
 <->  ( ch  /\  z  e.  U_ y  e.  pred  ( x ,  A ,  R ) ( {
 y }  u.  trCl ( y ,  A ,  R ) ) ) )   &    |-  ( et  <->  ( th  /\  y  e.  pred ( x ,  A ,  R )  /\  z  e.  ( { y }  u.  trCl
 ( y ,  A ,  R ) ) ) )   =>    |-  ( ch  ->  U_ y  e.  pred  ( x ,  A ,  R )
 ( { y }  u.  trCl ( y ,  A ,  R ) )  =  dom  P )
 
Theorembnj1413 28333* Property of  trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  (  pred ( X ,  A ,  R )  u.  U_ y  e.  pred  ( X ,  A ,  R )  trCl ( y ,  A ,  R ) )   =>    |-  ( ( R  FrSe  A 
 /\  X  e.  A )  ->  B  e.  _V )
 
Theorembnj1408 28334* Technical lemma for bnj1414 28335. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  (  pred ( X ,  A ,  R )  u.  U_ y  e.  pred  ( X ,  A ,  R )  trCl ( y ,  A ,  R ) )   &    |-  C  =  ( 
 pred ( X ,  A ,  R )  u.  U_ y  e.  trCl  ( X ,  A ,  R )  trCl ( y ,  A ,  R ) )   &    |-  ( th  <->  ( R  FrSe  A 
 /\  X  e.  A ) )   &    |-  ( ta  <->  ( B  e.  _V 
 /\  TrFo ( B ,  A ,  R )  /\  pred ( X ,  A ,  R )  C_  B ) )   =>    |-  ( ( R 
 FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  =  B )
 
Theorembnj1414 28335* Property of  trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  (  pred ( X ,  A ,  R )  u.  U_ y  e.  pred  ( X ,  A ,  R )  trCl ( y ,  A ,  R ) )   =>    |-  ( ( R  FrSe  A 
 /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  =  B )
 
Theorembnj1415 28336* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   =>    |-  ( ch  ->  dom  P  =  trCl ( x ,  A ,  R ) )
 
Theorembnj1416 28337 Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  ( ch  ->  dom 
 P  =  trCl ( x ,  A ,  R ) )   =>    |-  ( ch  ->  dom 
 Q  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
 
Theorembnj1418 28338 Property of  pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  (
 y  e.  pred ( x ,  A ,  R )  ->  y R x )
 
Theorembnj1417 28339* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
 |-  ( ph 
 <->  R  FrSe  A )   &    |-  ( ps 
 <->  -.  x  e.  trCl ( x ,  A ,  R ) )   &    |-  ( ch 
 <-> 
 A. y  e.  A  ( y R x 
 ->  [. y  /  x ].
 ps ) )   &    |-  ( th 
 <->  ( ph  /\  x  e.  A  /\  ch )
 )   &    |-  B  =  (  pred ( x ,  A ,  R )  u.  U_ y  e.  pred  ( x ,  A ,  R )  trCl ( y ,  A ,  R ) )   =>    |-  ( ph  ->  A. x  e.  A  -.  x  e.  trCl ( x ,  A ,  R ) )
 
Theorembnj1421 28340* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  ( ch  ->  Fun 
 P )   &    |-  ( ch  ->  dom 
 Q  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )   &    |-  ( ch  ->  dom  P  =  trCl ( x ,  A ,  R ) )   =>    |-  ( ch  ->  Fun 
 Q )
 
Theorembnj1444 28341* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   &    |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  P  Fn  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R )
 ) )   &    |-  ( th  <->  ( ch  /\  z  e.  E )
 )   &    |-  ( et  <->  ( th  /\  z  e.  { x } ) )   &    |-  ( ze 
 <->  ( th  /\  z  e.  trCl ( x ,  A ,  R )
 ) )   &    |-  ( rh  <->  ( ze  /\  f  e.  H  /\  z  e.  dom  f ) )   =>    |-  ( rh  ->  A. y rh )
 
Theorembnj1445 28342* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   &    |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  P  Fn  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R )
 ) )   &    |-  ( th  <->  ( ch  /\  z  e.  E )
 )   &    |-  ( et  <->  ( th  /\  z  e.  { x } ) )   &    |-  ( ze 
 <->  ( th  /\  z  e.  trCl ( x ,  A ,  R )
 ) )   &    |-  ( rh  <->  ( ze  /\  f  e.  H  /\  z  e.  dom  f ) )   &    |-  ( si  <->  ( rh  /\  y  e.  pred ( x ,  A ,  R )  /\  f  e.  C  /\  dom  f  =  ( { y }  u.  trCl
 ( y ,  A ,  R ) ) ) )   &    |-  ( ph  <->  ( si  /\  d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  (
 f `  x )  =  ( G `  Y ) ) )   &    |-  X  =  <. z ,  (
 f  |`  pred ( z ,  A ,  R ) ) >.   =>    |-  ( si  ->  A. d si )
 
Theorembnj1446 28343* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   =>    |-  ( ( Q `
  z )  =  ( G `  W )  ->  A. d ( Q `
  z )  =  ( G `  W ) )
 
Theorembnj1447 28344* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   =>    |-  ( ( Q `
  z )  =  ( G `  W )  ->  A. y ( Q `
  z )  =  ( G `  W ) )
 
Theorembnj1448 28345* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   =>    |-  ( ( Q `
  z )  =  ( G `  W )  ->  A. f ( Q `
  z )  =  ( G `  W ) )
 
Theorembnj1449 28346* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   &    |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  P  Fn  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R )
 ) )   &    |-  ( th  <->  ( ch  /\  z  e.  E )
 )   &    |-  ( et  <->  ( th  /\  z  e.  { x } ) )   &    |-  ( ze 
 <->  ( th  /\  z  e.  trCl ( x ,  A ,  R )
 ) )   =>    |-  ( ze  ->  A. f ze )
 
Theorembnj1442 28347* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   &    |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  P  Fn  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R )
 ) )   &    |-  ( th  <->  ( ch  /\  z  e.  E )
 )   &    |-  ( et  <->  ( th  /\  z  e.  { x } ) )   =>    |-  ( et  ->  ( Q `  z )  =  ( G `  W ) )
 
Theorembnj1450 28348* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   &    |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  P  Fn  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R )
 ) )   &    |-  ( th  <->  ( ch  /\  z  e.  E )
 )   &    |-  ( et  <->  ( th  /\  z  e.  { x } ) )   &    |-  ( ze 
 <->  ( th  /\  z  e.  trCl ( x ,  A ,  R )
 ) )   &    |-  ( rh  <->  ( ze  /\  f  e.  H  /\  z  e.  dom  f ) )   &    |-  ( si  <->  ( rh  /\  y  e.  pred ( x ,  A ,  R )  /\  f  e.  C  /\  dom  f  =  ( { y }  u.  trCl
 ( y ,  A ,  R ) ) ) )   &    |-  ( ph  <->  ( si  /\  d  e.  B  /\  f  Fn  d  /\  A. x  e.  d  (
 f `  x )  =  ( G `  Y ) ) )   &    |-  X  =  <. z ,  (
 f  |`  pred ( z ,  A ,  R ) ) >.   =>    |-  ( ze  ->  ( Q `  z )  =  ( G `  W ) )
 
Theorembnj1423 28349* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   &    |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  P  Fn  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R )
 ) )   =>    |-  ( ch  ->  A. z  e.  E  ( Q `  z )  =  ( G `  W ) )
 
Theorembnj1452 28350* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   &    |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R )
 )   =>    |-  ( ch  ->  E  e.  B )
 
Theorembnj1466 28351* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   =>    |-  ( w  e.  Q  ->  A. f  w  e.  Q )
 
Theorembnj1467 28352* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   =>    |-  ( w  e.  Q  ->  A. d  w  e.  Q )
 
Theorembnj1463 28353* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   &    |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R )
 )   &    |-  ( ch  ->  Q  e.  _V )   &    |-  ( ch  ->  A. z  e.  E  ( Q `  z )  =  ( G `  W ) )   &    |-  ( ch  ->  Q  Fn  E )   &    |-  ( ch  ->  E  e.  B )   =>    |-  ( ch  ->  Q  e.  C )
 
Theorembnj1489 28354* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   =>    |-  ( ch  ->  Q  e.  _V )
 
Theorembnj1491 28355* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  ( ch  ->  ( Q  e.  C  /\  dom 
 Q  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )   =>    |-  ( ( ch  /\  Q  e.  _V )  ->  E. f ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
 
Theorembnj1312 28356* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  ( ta 
 <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl
 ( x ,  A ,  R ) ) ) )   &    |-  D  =  { x  e.  A  |  -.  E. f ta }   &    |-  ( ps 
 <->  ( R  FrSe  A  /\  D  =/=  (/) ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )   &    |-  ( ta'  <->  [. y  /  x ]. ta )   &    |-  H  =  {
 f  |  E. y  e.  pred  ( x ,  A ,  R ) ta'
 }   &    |-  P  =  U. H   &    |-  Z  =  <. x ,  ( P  |`  pred ( x ,  A ,  R )
 ) >.   &    |-  Q  =  ( P  u.  { <. x ,  ( G `  Z )
 >. } )   &    |-  W  =  <. z ,  ( Q  |`  pred (
 z ,  A ,  R ) ) >.   &    |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R )
 )   =>    |-  ( R  FrSe  A  ->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
 
Theorembnj1493 28357* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   =>    |-  ( R  FrSe  A  ->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R )
 ) )
 
Theorembnj1497 28358* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   =>    |-  A. g  e.  C  Fun  g
 
Theorembnj1498 28359* Technical lemma for bnj60 28360. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  F  =  U. C   =>    |-  ( R  FrSe  A  ->  dom 
 F  =  A )
 
18.24.5  Well-founded recursion, part 1 of 3
 
Theorembnj60 28360* Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  F  =  U. C   =>    |-  ( R  FrSe  A  ->  F  Fn  A )
 
Theorembnj1514 28361* Technical lemma for bnj1500 28366. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   =>    |-  (
 f  e.  C  ->  A. x  e.  dom  f
 ( f `  x )  =  ( G `  Y ) )
 
Theorembnj1518 28362* Technical lemma for bnj1500 28366. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  F  =  U. C   &    |-  ( ph  <->  ( R  FrSe  A 
 /\  x  e.  A ) )   &    |-  ( ps  <->  ( ph  /\  f  e.  C  /\  x  e. 
 dom  f ) )   =>    |-  ( ps  ->  A. d ps )
 
Theorembnj1519 28363* Technical lemma for bnj1500 28366. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  F  =  U. C   =>    |-  ( ( F `  x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R )
 ) >. )  ->  A. d
 ( F `  x )  =  ( G ` 
 <. x ,  ( F  |`  pred ( x ,  A ,  R )
 ) >. ) )
 
Theorembnj1520 28364* Technical lemma for bnj1500 28366. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  F  =  U. C   =>    |-  ( ( F `  x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R )
 ) >. )  ->  A. f
 ( F `  x )  =  ( G ` 
 <. x ,  ( F  |`  pred ( x ,  A ,  R )
 ) >. ) )
 
Theorembnj1501 28365* Technical lemma for bnj1500 28366. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  F  =  U. C   &    |-  ( ph  <->  ( R  FrSe  A 
 /\  x  e.  A ) )   &    |-  ( ps  <->  ( ph  /\  f  e.  C  /\  x  e. 
 dom  f ) )   &    |-  ( ch  <->  ( ps  /\  d  e.  B  /\  dom  f  =  d ) )   =>    |-  ( R  FrSe  A  ->  A. x  e.  A  ( F `  x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R )
 ) >. ) )
 
18.24.6  Well-founded recursion, part 2 of 3
 
Theorembnj1500 28366* Well-founded recursion, part 2 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  F  =  U. C   =>    |-  ( R  FrSe  A  ->  A. x  e.  A  ( F `  x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R )
 ) >. ) )
 
Theorembnj1525 28367* Technical lemma for bnj1522 28370. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  F  =  U. C   &    |-  ( ph  <->  ( R  FrSe  A 
 /\  H  Fn  A  /\  A. x  e.  A  ( H `  x )  =  ( G `  <. x ,  ( H  |`  pred ( x ,  A ,  R )
 ) >. ) ) )   &    |-  ( ps  <->  ( ph  /\  F  =/=  H ) )   =>    |-  ( ps  ->  A. x ps )
 
Theorembnj1529 28368* Technical lemma for bnj1522 28370. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  ( ch  ->  A. x  e.  A  ( F `  x )  =  ( G `  <. x ,  ( F  |`  pred ( x ,  A ,  R )
 ) >. ) )   &    |-  ( w  e.  F  ->  A. x  w  e.  F )   =>    |-  ( ch  ->  A. y  e.  A  ( F `  y )  =  ( G `  <. y ,  ( F  |`  pred ( y ,  A ,  R ) ) >. ) )
 
Theorembnj1523 28369* Technical lemma for bnj1522 28370. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  F  =  U. C   &    |-  ( ph  <->  ( R  FrSe  A 
 /\  H  Fn  A  /\  A. x  e.  A  ( H `  x )  =  ( G `  <. x ,  ( H  |`  pred ( x ,  A ,  R )
 ) >. ) ) )   &    |-  ( ps  <->  ( ph  /\  F  =/=  H ) )   &    |-  ( ch 
 <->  ( ps  /\  x  e.  A  /\  ( F `
  x )  =/=  ( H `  x ) ) )   &    |-  D  =  { x  e.  A  |  ( F `  x )  =/=  ( H `  x ) }   &    |-  ( th 
 <->  ( ch  /\  y  e.  D  /\  A. z  e.  D  -.  z R y ) )   =>    |-  ( ( R 
 FrSe  A  /\  H  Fn  A  /\  A. x  e.  A  ( H `  x )  =  ( G `  <. x ,  ( H  |`  pred ( x ,  A ,  R )
 ) >. ) )  ->  F  =  H )
 
18.24.7  Well-founded recursion, part 3 of 3
 
Theorembnj1522 28370* Well-founded recursion, part 3 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
 |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d ) }   &    |-  Y  =  <. x ,  ( f  |`  pred
 ( x ,  A ,  R ) ) >.   &    |-  C  =  { f  |  E. d  e.  B  (
 f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }   &    |-  F  =  U. C   =>    |-  ( ( R  FrSe  A 
 /\  H  Fn  A  /\  A. x  e.  A  ( H `  x )  =  ( G `  <. x ,  ( H  |`  pred ( x ,  A ,  R )
 ) >. ) )  ->  F  =  H )
 
18.25  Mathbox for Norm Megill

Note: A label suffixed with "N" (after the "Atoms..." section below), such as lshpnel2N 28443, means that the definition or theorem is not used for the derivation of hlathil 31422. This is a temporary renaming to assist cleaning up the theorems needed by hlathil 31422.

Please inform me of any changes that might affect my mathbox, since I may be working on it independently of the github commits. - Norm 30-Nov-2015

 
18.25.1  Obsolete experiments to study ax-12o
 
Theoremax12-2 28371 Possible alternative to ax-12 1868. (Contributed by NM, 7-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  -.  z  =  y  ->  ( -. 
 A. z  -.  x  =  y  ->  A. z  x  =  y )
 )
 
Theoremax12-3 28372 An equivalent to ax12-2 28371. (Contributed by NM, 7-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( E. z  -.  x  =  y  ->  ( E. z  x  =  y  ->  E. x  z  =  y ) )
 
Theoremax12OLD 28373 Derive ax-12 1868 from ax12o 1877. (Contributed by NM, 29-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  A. z  -.  A. x  -.  z  =  y 
 ->  ( x  =  y 
 ->  A. z  x  =  y ) )
 
Theoremax12-4 28374 Study of candidate for ax-12 1868. (Contributed by NM, 7-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. z  -.  x  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
 )
 
Theoremanandii 28375 Elimination of dependent conjuncts. (Contributed by NM, 7-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ch )   &    |-  ( ps  ->  th )   =>    |-  ( ( ( ch 
 /\  ps )  /\  ( ph  /\  th ) )  <-> 
 ( ph  /\  ps )
 )
 
Theoremax12conj2 28376* Conjectured alternative to ax-12 1868. (Contributed by NM, 7-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  z  =  y  ->  ( x  =  y 
 ->  A. z  x  =  y ) )   =>    |-  ( ( -. 
 A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
 )  \/  ( -.  z  =  y  ->  ( -.  A. z  -.  x  =  y  ->  A. z  x  =  y ) ) )
 
Theoremhbae-x12 28377* Experiment to study ax12o 1877. Weak version of hbae 1895. Does not use sp 1717, ax9 1891, ax-10 2083, or ax12o 1877 but allows ax9v 1638. (Contributed by NM, 7-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  x  =  y  ->  A. y A. x  x  =  y )
 
Theoremhbnae-x12 28378* Experiment to study ax12o 1877. Weak version of hbnae 1898. Does not use sp 1717, ax9 1891, ax-10 2083, or ax12o 1877 but allows ax9v 1638. (Contributed by NM, 7-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  A. x  x  =  y  ->  A. y  -.  A. x  x  =  y )
 
Theorema12stdy1-x12 28379* Part of a study related to ax12o 1877. Weak version of a12stdy1 28394. Does not use sp 1717, ax9 1891, ax-10 2083, or ax12o 1877 but allows ax9v 1638. The consequent introduces a new variable  z. (Contributed by NM, 7-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  x  =  y  ->  E. x  y  =  z )
 
Theorema12stdy2-x12 28380* Part of a study related to ax12o 1877. Weak version of a12stdy2 28395. Does not use sp 1717, ax9 1891, ax-10 2083, or ax12o 1877 but allows ax9v 1638. The consequent is quantified with a different variable. (Contributed by NM, 7-Nov-1015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. z ( z  =  x  /\  x  =  y )  ->  A. y  y  =  x )
 
Theoremequsexv-x12 28381* Weaker version of equsex 1905 without using sp 1717, ax9 1891, ax-10 2083, or ax12o but allowing ax9v 1638. Experiment to study ax12o 1877. (Contributed by NM, 7-Nov-1015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x ( x  =  y  /\  ph )  <->  ps )
 
Theoremequvinv 28382* Similar to equvini 1930 without using ax12o 1877. (Contributed by NM, 7-Nov-1015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( x  =  y  <->  E. z ( x  =  z  /\  z  =  y ) )
 
Theoremequveliv 28383* Similar to equveli 1931 without using ax12o 1877. (Contributed by NM, 7-Nov-1015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. z ( z  =  x  ->  z  =  y )  <->  x  =  y
 )
 
Theoremequvelv 28384* Similar to equveli 1931 without using ax12o 1877. (Contributed by NM, 7-Nov-1015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. z ( z  =  x  <->  z  =  y
 ) 
 <->  x  =  y )
 
Theorema12study4 28385* Experiment to study ax12o 1877. The first hypothesis is a conjectured ax12o 1877 replacement (see ax12 2098 for its derivation from ax12o 1877). The second hypothesis needs to be proved without using ax12o 1877, if that is possible. (Contributed by NM, 7-Nov-1015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  z  =  y  ->  ( y  =  x 
 ->  A. z  y  =  x ) )   &    |-  ( -.  A. z  z  =  y  ->  ( (
 z  =  y  /\  y  =  x )  ->  A. z ( -.  z  =  x  ->  y  =  x )
 ) )   =>    |-  ( -.  A. z  z  =  y  ->  ( y  =  x  ->  A. z  y  =  x ) )
 
Theorema12study6 28386* Experiment to study ax12o 1877 (Contributed by NM, 6-Dec-1015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  z  =  y  ->  ( x  =  y 
 ->  A. z  x  =  y ) )   &    |-  ( -.  z  =  y  ->  ( -.  x  =  y  ->  A. z  -.  x  =  y )
 )   =>    |-  ( -.  z  =  y  ->  ( -.  A. z  -.  x  =  y  ->  A. z  x  =  y ) )
 
Theorema12study8 28387* Experiment to study ax12o 1877. Closed form of ax12conj2 28376. (Contributed by NM, 6-Dec-1015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( -.  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
 ) 
 <->  ( ( -.  A. z  z  =  y  ->  ( x  =  y 
 ->  A. z  x  =  y ) )  \/  ( -.  z  =  y  ->  ( -.  A. z  -.  x  =  y  ->  A. z  x  =  y ) ) ) )
 
Theorema12study9 28388* Experiment to study ax12o 1877. (Contributed by NM, 6-Dec-1015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. z ( -.  A. z  z  =  y  ->  ( x  =  y 
 ->  A. z  x  =  y ) )  <->  A. z ( -.  z  =  y  ->  ( -.  A. z  -.  x  =  y  ->  A. z  x  =  y ) ) )
 
Theorema12peros 28389* Experiment to study ax12o 1877. (Contributed by NM, 9-Dec-1015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph 
 <->  ( -.  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y )
 ) )   &    |-  ( ps  <->  ( -.  z  =  y  ->  ( -.  x  =  y  ->  A. z  -.  x  =  y ) ) )   &    |-  ( ch  <->  ( -.  z  =  y  ->  ( E. z  x  =  y  ->  A. z  x  =  y ) ) )   &    |-  ( th  <->  ( E. z  -.  z  =  y  ->  ( x  =  y 
 ->  A. z  x  =  y ) ) )   &    |-  ( ta  <->  ( E. z  -.  z  =  y  ->  ( E. z  x  =  y  ->  A. z  x  =  y )
 ) )   =>    |-  ( ph  <->  ( ch  \/  th ) )
 
Theorema12study5rev 28390* Experiment to study ax12o 1877. The hypothesis is a conjectured ax12o 1877 replacement. (Contributed by NM, 7-Nov-1015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. y  -.  z  =  x  ->  ( -. 
 A. z  -.  x  =  y  ->  A. z  x  =  y )
 )   =>    |-  ( -.  A. z  z  =  x  ->  ( x  =  y  ->  A. z  x  =  y ) )
 
Theoremax10lem17ALT 28391* Lemma for ax10 1886. Similar to dveeq2 1882, without using sp 1717, ax9 1891, or ax-10 2083 but allowing ax9v 1638. Direct proof of dveeq2 1882, bypassing dvelimnf 1963 to investigate possible simplifications. Uses ax12o 1877. (Contributed by NM, 20-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
 )
 
Theoremax10lem18ALT 28392* Distinctor with bound variable change without using sp 1717, ax9 1891, or ax-10 2083 but allowing ax9v 1638. Uses ax12o 1877. (Contributed by NM, 22-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  A. y  y  =  x  ->  ( A. x  x  =  w  ->  A. y  y  =  x ) )
 
TheoremdvelimfALT2OLD 28393* Proof of dvelimh 1941 using dveeq2 1882 (shown as the last hypothesis) instead of ax12o 1877. As a consequence, theorem a12study2 28402 shows that ax12o 1877 could be replaced by dveeq2 1882 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) Obsolete as of 1-Aug-2017 - NM.
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. z ps )   &    |-  (
 z  =  y  ->  ( ph  <->  ps ) )   &    |-  ( -.  A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
 )   =>    |-  ( -.  A. x  x  =  y  ->  ( ps  ->  A. x ps ) )
 
Theorema12stdy1 28394 Part of a study related to ax12o 1877. The consequent introduces a new variable  z. There are no distinct variable restrictions. (Contributed by NM, 14-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  x  =  y  ->  E. x  y  =  z )
 
Theorema12stdy2 28395 Part of a study related to ax12o 1877. The consequent is quantified with a different variable. There are no distinct variable restrictions. (Contributed by NM, 14-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. z ( z  =  x  /\  x  =  y )  ->  A. y  y  =  x )
 
Theorema12stdy3 28396 Part of a study related to ax12o 1877. The consequent introduces two new variables. There are no distinct variable restrictions. (Contributed by NM, 14-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. z ( z  =  x  /\  x  =  y )  ->  A. v E. y  x  =  w )
 
Theorema12stdy4 28397 Part of a study related to ax12o 1877. The second antecedent of ax12o 1877 is replaced. There are no distinct variable restrictions. (Contributed by NM, 14-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  A. z  z  =  x  ->  ( A. y  z  =  x  ->  ( x  =  y 
 ->  A. z  x  =  y ) ) )
 
Theorema12lem1 28398 Proof of first hypothesis of a12study 28400. (Contributed by NM, 15-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  A. z  z  =  y  ->  ( A. z ( z  =  x  ->  z  =  y )  ->  x  =  y ) )
 
Theorema12lem2 28399 Proof of second hypothesis of a12study 28400. (Contributed by NM, 15-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. z ( z  =  x  ->  -.  z  =  y )  ->  -.  x  =  y )
 
Theorema12study 28400 Rederivation of axiom ax12o 1877 from two shorter formulas, without using ax12o 1877. See a12lem1 28398 and a12lem2 28399 for the proofs of the hypotheses (using ax12o 1877). This is the only known breakdown of ax12o 1877 into shorter formulas. See a12studyALT 28401 for an alternate proof. Note that the proof depends on ax-11o 2084, whose proof ax11o 1938 depends on ax12o 1877, meaning that we would have to replace ax-11 1716 with ax-11o 2084 in an axiomatization that uses the hypotheses in place of ax12o 1877. Whether this can be avoided is an open problem. (Contributed by NM, 15-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  A. z  z  =  y  ->  ( A. z ( z  =  x  ->  z  =  y )  ->  x  =  y ) )   &    |-  ( A. z ( z  =  x  ->  -.  z  =  y )  ->  -.  x  =  y )   =>    |-  ( -.  A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31422
  Copyright terms: Public domain < Previous  Next >