HomeHome Metamath Proof Explorer
Theorem List (p. 287 of 325)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-22374)
  Hilbert Space Explorer  Hilbert Space Explorer
(22375-23897)
  Users' Mathboxes  Users' Mathboxes
(23898-32447)
 

Theorem List for Metamath Proof Explorer - 28601-28700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
TheoremuunT1 28601 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 (  T.  /\  ph )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunT1p1 28602 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  T.  )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunT21 28603 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 (  T.  /\  ( ph  /\  ps ) ) 
 ->  ch )   =>    |-  ( ( ph  /\  ps )  ->  ch )
 
Theoremuun121 28604 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ( ph  /\ 
 ps ) )  ->  ch )   =>    |-  ( ( ph  /\  ps )  ->  ch )
 
Theoremuun121p1 28605 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ps )  /\  ph )  ->  ch )   =>    |-  (
 ( ph  /\  ps )  ->  ch )
 
Theoremuun132 28606 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ( ps 
 /\  ch ) )  ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theoremuun132p1 28607 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ps  /\  ch )  /\  ph )  ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theoremanabss7p1 28608 A deduction unionizing a non-unionized collection of virtual hypotheses. This would have been named uun221 if the 0th permutation did not exist in set.mm as anabss7 795. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ps  /\  ph )  /\  ph )  ->  ch )   =>    |-  ( ( ps  /\  ph )  ->  ch )
 
Theoremun10 28609 A unionizing deduction (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. (. ph
 ,.  T.  ).  ->.  ps ).   =>    |-  (. ph  ->.  ps ).
 
Theoremun01 28610 A unionizing deduction (Contributed by Alan Sare, 28-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (. (.  T.  ,. ph ).  ->.  ps ).   =>    |-  (. ph  ->.  ps ).
 
Theoremun2122 28611 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ps )  /\  ps  /\  ps )  ->  ch )   =>    |-  ( ( ph  /\  ps )  ->  ch )
 
Theoremuun2131 28612 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ps )  /\  ( ph  /\  ch ) )  ->  th )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  th )
 
Theoremuun2131p1 28613 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ch )  /\  ( ph  /\  ps ) )  ->  th )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  th )
 
TheoremuunTT1 28614 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 (  T.  /\  T.  /\  ph )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunTT1p1 28615 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 (  T.  /\  ph  /\  T.  )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunTT1p2 28616 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  T.  /\  T.  )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunT11 28617 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 (  T.  /\  ph  /\  ph )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunT11p1 28618 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  T.  /\  ph )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunT11p2 28619 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ph  /\  T.  )  ->  ps )   =>    |-  ( ph  ->  ps )
 
TheoremuunT12 28620 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 (  T.  /\  ph  /\  ps )  ->  ch )   =>    |-  ( ( ph  /\  ps )  ->  ch )
 
TheoremuunT12p1 28621 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 (  T.  /\  ps  /\  ph )  ->  ch )   =>    |-  (
 ( ph  /\  ps )  ->  ch )
 
TheoremuunT12p2 28622 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  T.  /\  ps )  ->  ch )   =>    |-  (
 ( ph  /\  ps )  ->  ch )
 
TheoremuunT12p3 28623 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ps  /\  T.  /\  ph )  ->  ch )   =>    |-  (
 ( ph  /\  ps )  ->  ch )
 
TheoremuunT12p4 28624 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ps  /\  T.  )  ->  ch )   =>    |-  (
 ( ph  /\  ps )  ->  ch )
 
TheoremuunT12p5 28625 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ps  /\  ph  /\  T.  )  ->  ch )   =>    |-  ( ( ph  /\  ps )  ->  ch )
 
Theoremuun111 28626 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ph  /\  ph )  ->  ps )   =>    |-  ( ph  ->  ps )
 
Theorem3anidm12p1 28627 A deduction unionizing a non-unionized collection of virtual hypotheses. 3anidm12 1241 denotes the deduction which would have been named uun112 if it did not pre-exist in set.mm. This second permutation's name is based on this pre-existing name. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ps  /\  ph )  ->  ch )   =>    |-  (
 ( ph  /\  ps )  ->  ch )
 
Theorem3anidm12p2 28628 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ps  /\  ph  /\  ph )  ->  ch )   =>    |-  ( ( ph  /\  ps )  ->  ch )
 
Theoremuun123 28629 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ch  /\  ps )  ->  th )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  th )
 
Theoremuun123p1 28630 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ps  /\  ph  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theoremuun123p2 28631 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ch  /\  ph  /\  ps )  ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theoremuun123p3 28632 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ps  /\  ch  /\  ph )  ->  th )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  th )
 
Theoremuun123p4 28633 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ch  /\  ps  /\  ph )  ->  th )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  th )
 
Theoremuun2221 28634 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 30-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ph  /\  ( ps  /\  ph ) )  ->  ch )   =>    |-  ( ( ps  /\  ph )  ->  ch )
 
Theoremuun2221p1 28635 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ( ps 
 /\  ph )  /\  ph )  ->  ch )   =>    |-  ( ( ps  /\  ph )  ->  ch )
 
Theoremuun2221p2 28636 A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ps  /\  ph )  /\  ph  /\  ph )  ->  ch )   =>    |-  ( ( ps  /\  ph )  ->  ch )
 
Theorem3impdirp1 28637 A deduction unionizing a non-unionized collection of virtual hypotheses. 3impdir 1240 is ~? uun3132 and is in set.mm. 3impdirp1 28637 is ~? uun3132p1. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ch  /\  ps )  /\  ( ph  /\ 
 ps ) )  ->  th )   =>    |-  ( ( ph  /\  ch  /\ 
 ps )  ->  th )
 
Theorem3impcombi 28638 A 1-hypothesis propositional calculus deduction (Contributed by Alan Sare, 25-Sep-2017.)
 |-  (
 ( ph  /\  ps  /\  ph )  ->  ( ch  <->  th ) )   =>    |-  ( ( ps  /\  ph 
 /\  ch )  ->  th )
 
Theorem3imp231 28639 Importation inference. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )   =>    |-  ( ( ps  /\  ch 
 /\  ph )  ->  th )
 
19.24.6  Theorems proved using virtual deduction
 
TheoremtrsspwALT 28640 Virtual deduction proof of the left-to-right implication of dftr4 4267. A transitive class is a subset of its power class. This proof corresponds to the virtual deduction proof of dftr4 4267 without accumulating results. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( Tr  A  ->  A  C_  ~P A )
 
TheoremtrsspwALT2 28641 Virtual deduction proof of trsspwALT 28640. This proof is the same as the proof of trsspwALT 28640 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A transitive class is a subset of its power class. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( Tr  A  ->  A  C_  ~P A )
 
TheoremtrsspwALT3 28642 Short predicate calculus proof of the left-to-right implication of dftr4 4267. A transitive class is a subset of its power class. This proof was constructed by applying Metamath's minimize command to the proof of trsspwALT2 28641, which is the virtual deduction proof trsspwALT 28640 without virtual deductions. (Contributed by Alan Sare, 30-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( Tr  A  ->  A  C_  ~P A )
 
Theoremsspwtr 28643 Virtual deduction proof of the right-to-left implication of dftr4 4267. A class which is a subclass of its power class is transitive. This proof corresponds to the virtual deduction proof of sspwtr 28643 without accumulating results. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  C_  ~P A  ->  Tr  A )
 
TheoremsspwtrALT 28644 Virtual deduction proof of sspwtr 28643. This proof is the same as the proof of sspwtr 28643 except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A class which is a subclass of its power class is transitive. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  C_  ~P A  ->  Tr  A )
 
TheoremsspwtrALT2 28645 Short predicate calculus proof of the right-to-left implication of dftr4 4267. A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT 28644, which is the virtual deduction proof sspwtr 28643 without virtual deductions. (Contributed by Alan Sare, 3-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  C_  ~P A  ->  Tr  A )
 
TheorempwtrVD 28646 Virtual deduction proof of pwtr 4376. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( Tr  A  ->  Tr  ~P A )
 
TheorempwtrrVD 28647 Virtual deduction proof of pwtr 4376. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  ( Tr  ~P A  ->  Tr  A )
 
TheoremsnssiALTVD 28648 Virtual deduction proof of snssiALT 28649. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  { A }  C_  B )
 
TheoremsnssiALT 28649 If a class is an element of another class, then its singleton is a subclass of that other class. Alternate proof of snssi 3902. This theorem was automatically generated from snssiALTVD 28648 using a translation program. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  { A }  C_  B )
 
TheoremsnsslVD 28650 Virtual deduction proof of snssl 28651. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  ( { A }  C_  B  ->  A  e.  B )
 
Theoremsnssl 28651 If a singleton is a subclass of another class, then the singleton's element is an element of that other class. This theorem is the right-to-left implication of the biconditional snss 3886. The proof of this theorem was automatically generated from snsslVD 28650 using a tools command file, translateMWO.cmd , by translating the proof into its non-virtual deduction form and minimizing it. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  ( { A }  C_  B  ->  A  e.  B )
 
TheoremsnelpwrVD 28652 Virtual deduction proof of snelpwi 4369. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  { A }  e.  ~P B )
 
TheoremunipwrVD 28653 Virtual deduction proof of unipwr 28654. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  C_ 
 U. ~P A
 
Theoremunipwr 28654 A class is a subclass of the union of its power class. This theorem is the right-to-left subclass lemma of unipw 4374. The proof of this theorem was automatically generated from unipwrVD 28653 using a tools command file , translateMWO.cmd , by translating the proof into its non-virtual deduction form and minimizing it. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  C_ 
 U. ~P A
 
TheoremsstrALT2VD 28655 Virtual deduction proof of sstrALT2 28656. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
 
TheoremsstrALT2 28656 Virtual deduction proof of sstr 3316, transitivity of subclasses, Theorem 6 of [Suppes] p. 23. This theorem was automatically generated from sstrALT2VD 28655 using the command file translatewithout_overwriting.cmd . It was not minimized because the automated minimization excluding duplicates generates a minimized proof which, although not directly containing any duplicates, indirectly contains a duplicate. That is, the trace back of the minimized proof contains a duplicate. This is undesirable because some step(s) of the minimized proof use the proven theorem. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
 
TheoremsuctrALT2VD 28657 Virtual deduction proof of suctrALT2 28658. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( Tr  A  ->  Tr  suc  A )
 
TheoremsuctrALT2 28658 Virtual deduction proof of suctr 4624. The sucessor of a transitive class is transitive. This proof was generated automatically from the virtual deduction proof suctrALT2VD 28657 using the tools command file translatewithout_overwritingminimize_excludingduplicates.cmd . (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( Tr  A  ->  Tr  suc  A )
 
Theoremelex2VD 28659* Virtual deduction proof of elex2 2928. (Contributed by Alan Sare, 25-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  E. x  x  e.  B )
 
Theoremelex22VD 28660* Virtual deduction proof of elex22 2927. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( A  e.  B  /\  A  e.  C ) 
 ->  E. x ( x  e.  B  /\  x  e.  C ) )
 
Theoremeqsbc3rVD 28661* Virtual deduction proof of eqsbc3r 3178. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  (
 [. A  /  x ]. C  =  x  <->  C  =  A ) )
 
Theoremzfregs2VD 28662* Virtual deduction proof of zfregs2 7625. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  =/=  (/)  ->  -.  A. x  e.  A  E. y ( y  e.  A  /\  y  e.  x )
 )
 
Theoremtpid3gVD 28663 Virtual deduction proof of tpid3g 3879. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  A  e.  { C ,  D ,  A }
 )
 
Theoremen3lplem1VD 28664* Virtual deduction proof of en3lplem1 7626. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  A  ->  E. y ( y  e.  { A ,  B ,  C }  /\  y  e.  x ) ) )
 
Theoremen3lplem2VD 28665* Virtual deduction proof of en3lplem2 7627. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  E. y
 ( y  e.  { A ,  B ,  C }  /\  y  e.  x ) ) )
 
Theoremen3lpVD 28666 Virtual deduction proof of en3lp 7628. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  -.  ( A  e.  B  /\  B  e.  C  /\  C  e.  A )
 
19.24.7  Theorems proved using virtual deduction with mmj2 assistance
 
Theoremsimplbi2VD 28667 Virtual deduction proof of simplbi2 609. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1::  |-  ( ph  <->  ( ps  /\  ch ) )
3:1,?: e0_ 28593  |-  ( ( ps  /\  ch )  ->  ph )
qed:3,?: e0_ 28593  |-  ( ps  ->  ( ch  ->  ph ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph 
 <->  ( ps  /\  ch ) )   =>    |-  ( ps  ->  ( ch  ->  ph ) )
 
Theorem3ornot23VD 28668 Virtual deduction proof of 3ornot23 28302. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::
 |-  (. ( -.  ph  /\  -.  ps )  ->.  ( -.  ph  /\  -.  ps ) ).
2::  |-  (. ( -.  ph  /\  -.  ps ) ,. ( ch  \/  ph  \/  ps )  ->.  ( ch  \/  ph  \/  ps ) ).
3:1,?: e1_ 28437  |-  (. ( -.  ph  /\  -.  ps )  ->.  -.  ph ).
4:1,?: e1_ 28437  |-  (. ( -.  ph  /\  -.  ps )  ->.  -.  ps ).
5:3,4,?: e11 28498  |-  (. ( -.  ph  /\  -.  ps )  ->.  -.  ( ph  \/  ps ) ).
6:2,?: e2 28441  |-  (. ( -.  ph  /\  -.  ps ) ,. ( ch  \/  ph  \/  ps )  ->.  ( ch  \/  ( ph  \/  ps ) ) ).
7:5,6,?: e12 28545  |-  (. ( -.  ph  /\  -.  ps ) ,. ( ch  \/  ph  \/  ps )  ->.  ch ).
8:7:  |-  (. ( -.  ph  /\  -.  ps )  ->.  ( ( ch  \/  ph  \/  ps )  ->  ch ) ).
qed:8:  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ( ch  \/  ph  \/  ps )  ->  ch ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( -.  ph  /\  -.  ps )  ->  ( ( ch  \/  ph  \/  ps )  ->  ch ) )
 
Theoremorbi1rVD 28669 Virtual deduction proof of orbi1r 28303. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. ( ph  <->  ps )  ->.  ( ph  <->  ps ) ).
2::  |-  (. ( ph  <->  ps ) ,. ( ch  \/  ph )  ->.  ( ch  \/  ph ) ).
3:2,?: e2 28441  |-  (. ( ph  <->  ps ) ,. ( ch  \/  ph )  ->.  ( ph  \/  ch ) ).
4:1,3,?: e12 28545  |-  (. ( ph  <->  ps ) ,. ( ch  \/  ph )  ->.  ( ps  \/  ch ) ).
5:4,?: e2 28441  |-  (. ( ph  <->  ps ) ,. ( ch  \/  ph )  ->.  ( ch  \/  ps ) ).
6:5:  |-  (. ( ph  <->  ps )  ->.  ( ( ch  \/  ph )  ->  ( ch  \/  ps ) ) ).
7::  |-  (. ( ph  <->  ps ) ,. ( ch  \/  ps )  ->.  ( ch  \/  ps ) ).
8:7,?: e2 28441  |-  (. ( ph  <->  ps ) ,. ( ch  \/  ps )  ->.  ( ps  \/  ch ) ).
9:1,8,?: e12 28545  |-  (. ( ph  <->  ps ) ,. ( ch  \/  ps )  ->.  ( ph  \/  ch ) ).
10:9,?: e2 28441  |-  (. ( ph  <->  ps ) ,. ( ch  \/  ps )  ->.  ( ch  \/  ph ) ).
11:10:  |-  (. ( ph  <->  ps )  ->.  ( ( ch  \/  ps )  ->  ( ch  \/  ph ) ) ).
12:6,11,?: e11 28498  |-  (. ( ph  <->  ps )  ->.  ( ( ch  \/  ph )  <->  ( ch  \/  ps ) ) ).
qed:12:  |-  ( ( ph  <->  ps )  ->  ( ( ch  \/  ph )  <->  ( ch  \/  ps ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  <->  ps )  ->  (
 ( ch  \/  ph ) 
 <->  ( ch  \/  ps ) ) )
 
Theorembitr3VD 28670 Virtual deduction proof of bitr3 28304. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. ( ph  <->  ps )  ->.  ( ph  <->  ps ) ).
2:1,?: e1_ 28437  |-  (. ( ph  <->  ps )  ->.  ( ps  <->  ph ) ).
3::  |-  (. ( ph  <->  ps ) ,. ( ph  <->  ch )  ->.  ( ph  <->  ch ) ).
4:3,?: e2 28441  |-  (. ( ph  <->  ps ) ,. ( ph  <->  ch )  ->.  ( ch  <->  ph ) ).
5:2,4,?: e12 28545  |-  (. ( ph  <->  ps ) ,. ( ph  <->  ch )  ->.  ( ps  <->  ch ) ).
6:5:  |-  (. ( ph  <->  ps )  ->.  ( ( ph  <->  ch )  ->  ( ps  <->  ch ) ) ).
qed:6:  |-  ( ( ph  <->  ps )  ->  ( ( ph  <->  ch )  ->  ( ps  <->  ch ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  <->  ps )  ->  (
 ( ph  <->  ch )  ->  ( ps 
 <->  ch ) ) )
 
Theorem3orbi123VD 28671 Virtual deduction proof of 3orbi123 28305. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et ) )  ->.  ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et ) ) ).
2:1,?: e1_ 28437  |-  (. ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et ) )  ->.  ( ph  <->  ps ) ).
3:1,?: e1_ 28437  |-  (. ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et ) )  ->.  ( ch  <->  th ) ).
4:1,?: e1_ 28437  |-  (. ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et ) )  ->.  ( ta  <->  et ) ).
5:2,3,?: e11 28498  |-  (. ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et ) )  ->.  ( ( ph  \/  ch )  <->  ( ps  \/  th ) ) ).
6:5,4,?: e11 28498  |-  (. ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et ) )  ->.  ( ( ( ph  \/  ch )  \/  ta )  <->  ( ( ps  \/  th )  \/  et ) ) ).
7:?:  |-  ( ( ( ph  \/  ch )  \/  ta )  <->  ( ph  \/  ch  \/  ta ) )
8:6,7,?: e10 28504  |-  (. ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et ) )  ->.  ( ( ph  \/  ch  \/  ta )  <->  ( ( ps  \/  th )  \/  et ) ) ).
9:?:  |-  ( ( ( ps  \/  th )  \/  et )  <->  ( ps  \/  th  \/  et ) )
10:8,9,?: e10 28504  |-  (. ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et ) )  ->.  ( ( ph  \/  ch  \/  ta )  <->  ( ps  \/  th  \/  et ) ) ).
qed:10:  |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  th )  /\  ( ta  <->  et ) )  ->  ( ( ph  \/  ch  \/  ta )  <->  ( ps  \/  th  \/  et ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  <->  ps )  /\  ( ch 
 <-> 
 th )  /\  ( ta 
 <->  et ) )  ->  ( ( ph  \/  ch 
 \/  ta )  <->  ( ps  \/  th 
 \/  et ) ) )
 
Theoremsbc3orgVD 28672 Virtual deduction proof of sbc3org 28327. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2:1,?: e1_ 28437  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ( ph  \/  ps )  \/  ch )  <->  ( [. A  /  x ]. ( ph  \/  ps )  \/  [. A  /  x ]. ch ) ) ).
3::  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  ( ph  \/  ps  \/  ch ) )
32:3:  |-  A. x ( ( ( ph  \/  ps )  \/  ch )  <->  ( ph  \/  ps  \/  ch ) )
33:1,32,?: e10 28504  |-  (. A  e.  B  ->.  [. A  /  x ]. ( ( ( ph  \/  ps )  \/  ch )  <->  ( ph  \/  ps  \/  ch ) ) ).
4:1,33,?: e11 28498  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ( ph  \/  ps )  \/  ch )  <->  [. A  /  x ]. ( ph  \/  ps  \/  ch ) ) ).
5:2,4,?: e11 28498  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  \/  ps  \/  ch )  <->  ( [. A  /  x ]. ( ph  \/  ps )  \/  [. A  /  x ]. ch ) ) ).
6:1,?: e1_ 28437  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  \/  ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) ) ).
7:6,?: e1_ 28437  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. ( ph  \/  ps )  \/  [. A  /  x ]. ch )  <->  ( ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps )  \/  [. A  /  x ]. ch ) ) ).
8:5,7,?: e11 28498  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  \/  ps  \/  ch )  <->  ( ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps )  \/  [. A  /  x ]. ch ) ) ).
9:?:  |-  ( ( ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps )  \/  [. A  /  x ]. ch )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps  \/  [. A  /  x ]. ch ) )
10:8,9,?: e10 28504  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  \/  ps  \/  ch )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps  \/  [. A  /  x ]. ch ) ) ).
qed:10:  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  \/  ps  \/  ch )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps  \/  [. A  /  x ]. ch ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  (
 [. A  /  x ]. ( ph  \/  ps  \/  ch )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps  \/  [. A  /  x ].
 ch ) ) )
 
Theorem19.21a3con13vVD 28673* Virtual deduction proof of alrim3con13v 28328. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. ( ph  ->  A. x ph )  ->.  ( ph  ->  A. x ph ) ).
2::  |-  (. ( ph  ->  A. x ph ) ,. ( ps  /\  ph  /\  ch )  ->.  ( ps  /\  ph  /\  ch ) ).
3:2,?: e2 28441  |-  (. ( ph  ->  A. x ph ) ,. ( ps  /\  ph  /\  ch )  ->.  ps ).
4:2,?: e2 28441  |-  (. ( ph  ->  A. x ph ) ,. ( ps  /\  ph  /\  ch )  ->.  ph ).
5:2,?: e2 28441  |-  (. ( ph  ->  A. x ph ) ,. ( ps  /\  ph  /\  ch )  ->.  ch ).
6:1,4,?: e12 28545  |-  (. ( ph  ->  A. x ph ) ,. ( ps  /\  ph  /\  ch )  ->.  A. x ph ).
7:3,?: e2 28441  |-  (. ( ph  ->  A. x ph ) ,. ( ps  /\  ph  /\  ch )  ->.  A. x ps ).
8:5,?: e2 28441  |-  (. ( ph  ->  A. x ph ) ,. ( ps  /\  ph  /\  ch )  ->.  A. x ch ).
9:7,6,8,?: e222 28446  |-  (. ( ph  ->  A. x ph ) ,. ( ps  /\  ph  /\  ch )  ->.  ( A. x ps  /\  A. x ph  /\  A. x ch ) ).
10:9,?: e2 28441  |-  (. ( ph  ->  A. x ph ) ,. ( ps  /\  ph  /\  ch )  ->.  A. x ( ps  /\  ph  /\  ch ) ).
11:10:in2  |-  (. ( ph  ->  A. x ph )  ->.  ( ( ps  /\  ph  /\  ch )  ->  A. x ( ps  /\  ph  /\  ch ) ) ).
qed:11:in1  |-  ( ( ph  ->  A. x ph )  ->  ( ( ps  /\  ph  /\  ch )  ->  A. x ( ps  /\  ph  /\  ch ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  ->  A. x ph )  ->  ( ( ps  /\  ph  /\  ch )  ->  A. x ( ps 
 /\  ph  /\  ch )
 ) )
 
TheoremexbirVD 28674 Virtual deduction proof of exbir 1371. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. ( ( ph  /\  ps )  ->  ( ch  <->  th ) )  ->.  ( ( ph  /\  ps )  ->  ( ch  <->  th ) ) ).
2::  |-  (. ( ( ph  /\  ps )  ->  ( ch  <->  th ) ) ,.  ( ph  /\  ps )  ->.  ( ph  /\  ps ) ).
3::  |-  (. ( ( ph  /\  ps )  ->  ( ch  <->  th ) ) ,.  ( ph  /\  ps ) ,  th  ->.  th ).
5:1,2,?: e12 28545  |-  (. ( ( ph  /\  ps )  ->  ( ch  <->  th ) ) ,  ( ph  /\  ps )  ->.  ( ch  <->  th ) ).
6:3,5,?: e32 28579  |-  (. ( ( ph  /\  ps )  ->  ( ch  <->  th ) ) ,  ( ph  /\  ps ) ,  th  ->.  ch ).
7:6:  |-  (. ( ( ph  /\  ps )  ->  ( ch  <->  th ) ) ,  ( ph  /\  ps )  ->.  ( th  ->  ch ) ).
8:7:  |-  (. ( ( ph  /\  ps )  ->  ( ch  <->  th ) )  ->.  ( ( ph  /\  ps )  ->  ( th  ->  ch ) ) ).
9:8,?: e1_ 28437  |-  (. ( ( ph  /\  ps )  ->  ( ch  <->  th ) )  ->.  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) ) ).
qed:9:  |-  ( ( ( ph  /\  ps )  ->  ( ch  <->  th ) )  ->  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) ) )
(Contributed by Alan Sare, 13-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ps )  ->  ( ch  <->  th ) )  ->  ( ph  ->  ( ps  ->  ( th  ->  ch )
 ) ) )
 
TheoremexbiriVD 28675 Virtual deduction proof of exbiri 606. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1::  |-  ( ( ph  /\  ps )  ->  ( ch  <->  th ) )
2::  |-  (. ph  ->.  ph ).
3::  |-  (. ph ,. ps  ->.  ps ).
4::  |-  (. ph ,. ps ,. th  ->.  th ).
5:2,1,?: e10 28504  |-  (. ph  ->.  ( ps  ->  ( ch  <->  th ) ) ).
6:3,5,?: e21 28551  |-  (. ph ,. ps  ->.  ( ch  <->  th ) ).
7:4,6,?: e32 28579  |-  (. ph ,. ps ,. th  ->.  ch ).
8:7:  |-  (. ph ,. ps  ->.  ( th  ->  ch ) ).
9:8:  |-  (. ph  ->.  ( ps  ->  ( th  ->  ch ) ) ).
qed:9:  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ps )  ->  ( ch  <->  th ) )   =>    |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
 
Theoremrspsbc2VD 28676* Virtual deduction proof of rspsbc2 28329. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2::  |-  (. A  e.  B ,. C  e.  D  ->.  C  e.  D ).
3::  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x  e.  B A. y  e.  D ph ).
4:1,3,?: e13 28569  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D ph  ->.  [. A  /  x ]. A. y  e.  D ph ).
5:1,4,?: e13 28569  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D ph  ->.  A. y  e.  D [. A  /  x ]. ph ).
6:2,5,?: e23 28576  |-  (. A  e.  B ,. C  e.  D ,. A. x  e.  B  A. y  e.  D ph  ->.  [. C  /  y ]. [. A  /  x ]. ph ).
7:6:  |-  (. A  e.  B ,. C  e.  D  ->.  ( A. x  e.  B  A. y  e.  D ph  ->  [. C  /  y ]. [. A  /  x ]. ph ) ).
8:7:  |-  (. A  e.  B  ->.  ( C  e.  D  ->  ( A. x  e.  B A. y  e.  D ph  ->  [. C  /  y ]. [. A  /  x ]. ph ) ) ).
qed:8:  |-  ( A  e.  B  ->  ( C  e.  D  ->  ( A. x  e.  B A. y  e.  D ph  ->  [. C  /  y ]. [. A  /  x ]. ph ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  ( C  e.  D  ->  (
 A. x  e.  B  A. y  e.  D  ph  -> 
 [. C  /  y ]. [. A  /  x ].
 ph ) ) )
 
Theorem3impexpVD 28677 Virtual deduction proof of 3impexp 1372. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. ( ( ph  /\  ps  /\  ch )  ->  th )  ->.  ( ( ph  /\  ps  /\  ch )  ->  th ) ).
2::  |-  ( ( ph  /\  ps  /\  ch )  <->  ( ( ph  /\  ps )  /\  ch ) )
3:1,2,?: e10 28504  |-  (. ( ( ph  /\  ps  /\  ch )  ->  th )  ->.  ( ( ( ph  /\  ps )  /\  ch )  ->  th ) ).
4:3,?: e1_ 28437  |-  (. ( ( ph  /\  ps  /\  ch )  ->  th )  ->.  ( ( ph  /\  ps )  ->  ( ch  ->  th ) ) ).
5:4,?: e1_ 28437  |-  (. ( ( ph  /\  ps  /\  ch )  ->  th )  ->.  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) ) ).
6:5:  |-  ( ( ( ph  /\  ps  /\  ch )  ->  th )  ->  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) ) )
7::  |-  (. ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )  ->.  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) ) ).
8:7,?: e1_ 28437  |-  (. ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )  ->.  ( ( ph  /\  ps )  ->  ( ch  ->  th ) ) ).
9:8,?: e1_ 28437  |-  (. ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )  ->.  ( ( ( ph  /\  ps )  /\  ch )  ->  th ) ).
10:2,9,?: e01 28501  |-  (. ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )  ->.  ( ( ph  /\  ps  /\  ch )  ->  th ) ).
11:10:  |-  ( ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )  ->  ( ( ph  /\  ps  /\  ch )  ->  th ) )
qed:6,11,?: e00 28589  |-  ( ( ( ph  /\  ps  /\  ch )  ->  th )  <->  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ps  /\ 
 ch )  ->  th )  <->  (
 ph  ->  ( ps  ->  ( ch  ->  th )
 ) ) )
 
Theorem3impexpbicomVD 28678 Virtual deduction proof of 3impexpbicom 1373. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. ( ( ph  /\  ps  /\  ch )  ->  ( th  <->  ta ) )  ->.  ( ( ph  /\  ps  /\  ch )  ->  ( th  <->  ta ) ) ).
2::  |-  ( ( th  <->  ta )  <->  ( ta  <->  th ) )
3:1,2,?: e10 28504  |-  (. ( ( ph  /\  ps  /\  ch )  ->  ( th  <->  ta ) )  ->.  ( ( ph  /\  ps  /\  ch )  ->  ( ta  <->  th ) ) ).
4:3,?: e1_ 28437  |-  (. ( ( ph  /\  ps  /\  ch )  ->  ( th  <->  ta ) )  ->.  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) ) ).
5:4:  |-  ( ( ( ph  /\  ps  /\  ch )  ->  ( th  <->  ta ) )  ->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) ) )
6::  |-  (. ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )  ->.  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) ) ).
7:6,?: e1_ 28437  |-  (. ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )  ->.  ( ( ph  /\  ps  /\  ch )  ->  ( ta  <->  th ) ) ).
8:7,2,?: e10 28504  |-  (. ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )  ->.  ( ( ph  /\  ps  /\  ch )  ->  ( th  <->  ta ) ) ).
9:8:  |-  ( ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )  ->  ( ( ph  /\  ps  /\  ch )  ->  ( th  <->  ta ) ) )
qed:5,9,?: e00 28589  |-  ( ( ( ph  /\  ps  /\  ch )  ->  ( th  <->  ta ) )  <->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ps  /\ 
 ch )  ->  ( th 
 <->  ta ) )  <->  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) ) )
 
Theorem3impexpbicomiVD 28679 Virtual deduction proof of 3impexpbicomi 1374. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1::  |-  ( ( ph  /\  ps  /\  ch )  ->  ( th  <->  ta ) )
qed:1,?: e0_ 28593  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  /\  ps  /\  ch )  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th ) ) ) )
 
TheoremsbcoreleleqVD 28680* Virtual deduction proof of sbcoreleleq 28330. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2:1,?: e1_ 28437  |-  (. A  e.  B  ->.  ( [. A  /  y ]. x  e.  y  <->  x  e.  A ) ).
3:1,?: e1_ 28437  |-  (. A  e.  B  ->.  ( [. A  /  y ]. y  e.  x  <->  A  e.  x ) ).
4:1,?: e1_ 28437  |-  (. A  e.  B  ->.  ( [. A  /  y ]. x  =  y  <->  x  =  A ) ).
5:2,3,4,?: e111 28484  |-  (. A  e.  B  ->.  ( ( x  e.  A  \/  A  e.  x  \/  x  =  A )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) ).
6:1,?: e1_ 28437  |-  (. A  e.  B  ->.  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) ).
7:5,6: e11 28498  |-  (. A  e.  B  ->.  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) ).
qed:7:  |-  ( A  e.  B  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  (
 [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
 ) 
 <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A )
 ) )
 
Theoremhbra2VD 28681* Virtual deduction proof of nfra2 2720. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  ( A. y  e.  B A. x  e.  A ph  ->  A. y A. y  e.  B A. x  e.  A ph )
2::  |-  ( A. x  e.  A A. y  e.  B ph  <->  A. y  e.  B A. x  e.  A ph )
3:1,2,?: e00 28589  |-  ( A. x  e.  A A. y  e.  B ph  ->  A. y A. y  e.  B A. x  e.  A ph )
4:2:  |-  A. y ( A. x  e.  A A. y  e.  B ph  <->  A. y  e.  B A. x  e.  A ph )
5:4,?: e0_ 28593  |-  ( A. y A. x  e.  A A. y  e.  B ph  <->  A. y A. y  e.  B A. x  e.  A ph )
qed:3,5,?: e00 28589  |-  ( A. x  e.  A A. y  e.  B ph  ->  A. y A. x  e.  A A. y  e.  B ph )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  e.  A  A. y  e.  B  ph  ->  A. y A. x  e.  A  A. y  e.  B  ph )
 
TheoremtratrbVD 28682* Virtual deduction proof of tratrb 28331. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->.  ( Tr  A  /\  A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ).
2:1,?: e1_ 28437  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->.  Tr  A ).
3:1,?: e1_ 28437  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->.  A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ).
4:1,?: e1_ 28437  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->.  B  e.  A ).
5::  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  ( x  e.  y  /\  y  e.  B ) ).
6:5,?: e2 28441  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  x  e.  y ).
7:5,?: e2 28441  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  y  e.  B ).
8:2,7,4,?: e121 28466  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  y  e.  A ).
9:2,6,8,?: e122 28463  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  x  e.  A ).
10::  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B ) ,  B  e.  x  ->.  B  e.  x ).
11:6,7,10,?: e223 28445  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B ) ,  B  e.  x  ->.  ( x  e.  y  /\  y  e.  B  /\  B  e.  x ) ).
12:11:  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  ( B  e.  x  ->  ( x  e.  y  /\  y  e.  B  /\  B  e.  x ) ) ).
13::  |-  -.  ( x  e.  y  /\  y  e.  B  /\  B  e.  x )
14:12,13,?: e20 28548  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  -.  B  e.  x ).
15::  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B ) ,  x  =  B  ->.  x  =  B ).
16:7,15,?: e23 28576  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B ) ,  x  =  B  ->.  y  e.  x ).
17:6,16,?: e23 28576  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B ) ,  x  =  B  ->.  ( x  e.  y  /\  y  e.  x ) ).
18:17:  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  ( x  =  B  ->  ( x  e.  y  /\  y  e.  x ) ) ).
19::  |-  -.  ( x  e.  y  /\  y  e.  x )
20:18,19,?: e20 28548  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  -.  x  =  B ).
21:3,?: e1_ 28437  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->.  A. y  e.  A  A. x  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ).
22:21,9,4,?: e121 28466  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  [. x  /  x ]. [. B  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ).
23:22,?: e2 28441  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  [. B  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ).
24:4,23,?: e12 28545  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  ( x  e.  B  \/  B  e.  x  \/  x  =  B ) ).
25:14,20,24,?: e222 28446  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) ,  ( x  e.  y  /\  y  e.  B )  ->.  x  e.  B ).
26:25:  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->.  ( ( x  e.  y  /\  y  e.  B )  ->  x  e.  B ) ).
27::  |-  ( A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  ->  A. y A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
28:27,?: e0_ 28593  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->  A. y ( Tr  A  /\  A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) )
29:28,26:  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->.  A. y ( ( x  e.  y  /\  y  e.  B )  ->  x  e.  B ) ).
30::  |-  ( A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  ->  A. x A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
31:30,?: e0_ 28593  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->  A. x ( Tr  A  /\  A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) )
32:31,29:  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->.  A. x  A. y ( ( x  e.  y  /\  y  e.  B )  ->  x  e.  B ) ).
33:32,?: e1_ 28437  |-  (. ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->.  Tr  B ).
qed:33:  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A )  ->  Tr  B )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( Tr  A  /\  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A ) 
 ->  Tr  B )
 
Theorem3ax5VD 28683 Virtual deduction proof of 3ax5 28332. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. A. x ( ph  ->  ( ps  ->  ch ) )  ->.  A. x ( ph  ->  ( ps  ->  ch ) ) ).
2:1,?: e1_ 28437  |-  (. A. x ( ph  ->  ( ps  ->  ch ) )  ->.  ( A. x ph  ->  A. x ( ps  ->  ch ) ) ).
3::  |-  ( A. x ( ps  ->  ch )  ->  ( A. x ps  ->  A. x ch ) )
4:2,3,?: e10 28504  |-  (. A. x ( ph  ->  ( ps  ->  ch ) )  ->.  ( A. x ph  ->  ( A. x ps  ->  A. x ch ) ) ).
qed:4:  |-  ( A. x ( ph  ->  ( ps  ->  ch ) )  ->  ( A. x ph  ->  ( A. x ps  ->  A. x ch ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x ( ph  ->  ( ps  ->  ch )
 )  ->  ( A. x ph  ->  ( A. x ps  ->  A. x ch ) ) )
 
Theoremsyl5impVD 28684 Virtual deduction proof of syl5imp 28306. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. ( ph  ->  ( ps  ->  ch ) )  ->.  ( ph  ->  ( ps  ->  ch ) ) ).
2:1,?: e1_ 28437  |-  (. ( ph  ->  ( ps  ->  ch ) )  ->.  ( ps  ->  ( ph  ->  ch ) ) ).
3::  |-  (. ( ph  ->  ( ps  ->  ch ) ) ,. ( th  ->  ps )  ->.  ( th  ->  ps ) ).
4:3,2,?: e21 28551  |-  (. ( ph  ->  ( ps  ->  ch ) ) ,. ( th  ->  ps )  ->.  ( th  ->  ( ph  ->  ch ) ) ).
5:4,?: e2 28441  |-  (. ( ph  ->  ( ps  ->  ch ) ) ,. ( th  ->  ps )  ->.  ( ph  ->  ( th  ->  ch ) ) ).
6:5:  |-  (. ( ph  ->  ( ps  ->  ch ) )  ->.  ( ( th  ->  ps )  ->  ( ph  ->  ( th  ->  ch ) ) ) ).
qed:6:  |-  ( ( ph  ->  ( ps  ->  ch ) )  ->  ( ( th  ->  ps )  ->  ( ph  ->  ( th  ->  ch ) ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  ->  ( ps 
 ->  ch ) )  ->  ( ( th  ->  ps )  ->  ( ph  ->  ( th  ->  ch )
 ) ) )
 
TheoremidiVD 28685 Virtual deduction proof of idi 2. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1::  |-  ph
qed:1,?: e0_ 28593  |-  ph
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ph   =>    |-  ph
 
TheoremancomsimpVD 28686 Closed form of ancoms 440. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  ( ( ph  /\  ps )  <->  ( ps  /\  ph ) )
qed:1,?: e0_ 28593  |-  ( ( ( ph  /\  ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )
(Contributed by Alan Sare, 25-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ( ph  /\  ps )  ->  ch )  <->  ( ( ps 
 /\  ph )  ->  ch )
 )
 
Theoremssralv2VD 28687* Quantification restricted to a subclass for two quantifiers. ssralv 3367 for two quantifiers. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ssralv2 28326 is ssralv2VD 28687 without virtual deductions and was automatically derived from ssralv2VD 28687.
1::  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  ( A  C_  B  /\  C  C_  D ) ).
2::  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x  e.  B A. y  e.  D ph ).
3:1:  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  A  C_  B ).
4:3,2:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x  e.  A A. y  e.  D ph ).
5:4:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x ( x  e.  A  ->  A. y  e.  D ph ) ).
6:5:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  ( x  e.  A  ->  A. y  e.  D ph ) ).
7::  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph ,  x  e.  A  ->.  x  e.  A ).
8:7,6:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph ,  x  e.  A  ->.  A. y  e.  D ph ).
9:1:  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  C  C_  D ).
10:9,8:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph ,  x  e.  A  ->.  A. y  e.  C ph ).
11:10:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  ( x  e.  A  ->  A. y  e.  C ph ) ).
12::  |-  ( ( A  C_  B  /\  C  C_  D )  ->  A. x ( A  C_  B  /\  C  C_  D ) )
13::  |-  ( A. x  e.  B A. y  e.  D ph  ->  A. x A. x  e.  B A. y  e.  D ph )
14:12,13,11:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x ( x  e.  A  ->  A. y  e.  C ph ) ).
15:14:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x  e.  A A. y  e.  C ph ).
16:15:  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  ( A. x  e.  B A. y  e.  D ph  ->  A. x  e.  A A. y  e.  C ph ) ).
qed:16:  |-  ( ( A  C_  B  /\  C  C_  D )  ->  ( A. x  e.  B A. y  e.  D ph  ->  A. x  e.  A A. y  e.  C ph ) )
(Contributed by Alan Sare, 10-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( A  C_  B  /\  C  C_  D )  ->  ( A. x  e.  B  A. y  e.  D  ph  ->  A. x  e.  A  A. y  e.  C  ph ) )
 
TheoremordelordALTVD 28688 An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 4563 using the Axiom of Regularity indirectly through dford2 7531. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that  _E  Fr  A because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT 28333 is ordelordALTVD 28688 without virtual deductions and was automatically derived from ordelordALTVD 28688 using the tools program translate..without..overwriting.cmd and Metamath's minimize command.
1::  |-  (. ( Ord  A  /\  B  e.  A )  ->.  ( Ord  A  /\  B  e.  A ) ).
2:1:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  A ).
3:1:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  e.  A ).
4:2:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  A ).
5:2:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
6:4,3:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  C_  A ).
7:6,6,5:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  B  A. y  e.  B ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
8::  |-  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
9:8:  |-  A. y ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
10:9:  |-  A. y  e.  A ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
11:10:  |-  ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
12:11:  |-  A. x ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
13:12:  |-  A. x  e.  A ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
14:13:  |-  ( A. x  e.  A A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
15:14,5:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ).
16:4,15,3:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  B ).
17:16,7:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  B ).
qed:17:  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( Ord  A  /\  B  e.  A )  ->  Ord  B )
 
TheoremequncomVD 28689 If a class equals the union of two other classes, then it equals the union of those two classes commuted. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncom 3452 is equncomVD 28689 without virtual deductions and was automatically derived from equncomVD 28689.
1::  |-  (. A  =  ( B  u.  C )  ->.  A  =  ( B  u.  C ) ).
2::  |-  ( B  u.  C )  =  ( C  u.  B )
3:1,2:  |-  (. A  =  ( B  u.  C )  ->.  A  =  ( C  u.  B ) ).
4:3:  |-  ( A  =  ( B  u.  C )  ->  A  =  ( C  u.  B ) )
5::  |-  (. A  =  ( C  u.  B )  ->.  A  =  ( C  u.  B ) ).
6:5,2:  |-  (. A  =  ( C  u.  B )  ->.  A  =  ( B  u.  C ) ).
7:6:  |-  ( A  =  ( C  u.  B )  ->  A  =  ( B  u.  C ) )
8:4,7:  |-  ( A  =  ( B  u.  C )  <->  A  =  ( C  u.  B ) )
(Contributed by Alan Sare, 17-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  =  ( B  u.  C )  <->  A  =  ( C  u.  B ) )
 
TheoremequncomiVD 28690 Inference form of equncom 3452. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncomi 3453 is equncomiVD 28690 without virtual deductions and was automatically derived from equncomiVD 28690.
h1::  |-  A  =  ( B  u.  C )
qed:1:  |-  A  =  ( C  u.  B )
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  =  ( B  u.  C )   =>    |-  A  =  ( C  u.  B )
 
TheoremsucidALTVD 28691 A set belongs to its successor. Alternate proof of sucid 4620. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucidALT 28692 is sucidALTVD 28691 without virtual deductions and was automatically derived from sucidALTVD 28691. This proof illustrates that completeusersproof.cmd will generate a Metamath proof from any User's Proof which is "conventional" in the sense that no step is a virtual deduction, provided that all necessary unification theorems and transformation deductions are in set.mm. completeusersproof.cmd automatically converts such a conventional proof into a Virtual Deduction proof for which each step happens to be a 0-virtual hypothesis virtual deduction. The user does not need to search for reference theorem labels or deduction labels nor does he(she) need to use theorems and deductions which unify with reference theorems and deductions in set.mm. All that is necessary is that each theorem or deduction of the User's Proof unifies with some reference theorem or deduction in set.mm or is a semantic variation of some theorem or deduction which unifies with some reference theorem or deduction in set.mm. The definition of "semantic variation" has not been precisely defined. If it is obvious that a theorem or deduction has the same meaning as another theorem or deduction, then it is a semantic variation of the latter theorem or deduction. For example, step 4 of the User's Proof is a semantic variation of the definition (axiom)  suc  A  =  ( A  u.  { A } ), which unifies with df-suc 4547, a reference definition (axiom) in set.mm. Also, a theorem or deduction is said to be a semantic variation of another theorem or deduction if it is obvious upon cursory inspection that it has the same meaning as a weaker form of the latter theorem or deduction. For example, the deduction  Ord  A infers  A. x  e.  A A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x ) is a semantic variation of the theorem  ( Ord  A  <->  ( Tr  A  /\  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) ), which unifies with the set.mm reference definition (axiom) dford2 7531.
h1::  |-  A  e.  _V
2:1:  |-  A  e.  { A }
3:2:  |-  A  e.  ( { A }  u.  A )
4::  |-  suc  A  =  ( { A }  u.  A )
qed:3,4:  |-  A  e.  suc  A
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  A  e.  suc  A
 
TheoremsucidALT 28692 A set belongs to its successor. This proof was automatically derived from sucidALTVD 28691 using translatewithout_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  A  e.  suc  A
 
TheoremsucidVD 28693 A set belongs to its successor. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucid 4620 is sucidVD 28693 without virtual deductions and was automatically derived from sucidVD 28693.
h1::  |-  A  e.  _V
2:1:  |-  A  e.  { A }
3:2:  |-  A  e.  ( A  u.  { A } )
4::  |-  suc  A  =  ( A  u.  { A } )
qed:3,4:  |-  A  e.  suc  A
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  A  e.  suc  A
 
Theoremimbi12VD 28694 Implication form of imbi12i 317. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi12 28314 is imbi12VD 28694 without virtual deductions and was automatically derived from imbi12VD 28694.
1::  |-  (. ( ph  <->  ps )  ->.  ( ph  <->  ps ) ).
2::  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th )  ->.  ( ch  <->  th ) ).
3::  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th ) ,. ( ph  ->  ch )  ->.  ( ph  ->  ch ) ).
4:1,3:  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th ) ,. ( ph  ->  ch )  ->.  ( ps  ->  ch ) ).
5:2,4:  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th ) ,. ( ph  ->  ch )  ->.  ( ps  ->  th ) ).
6:5:  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th )  ->.  ( ( ph  ->  ch )  ->  ( ps  ->  th ) ) ).
7::  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th ) ,. ( ps  ->  th )  ->.  ( ps  ->  th ) ).
8:1,7:  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th ) ,. ( ps  ->  th )  ->.  ( ph  ->  th ) ).
9:2,8:  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th ) ,. ( ps  ->  th )  ->.  ( ph  ->  ch ) ).
10:9:  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th )  ->.  ( ( ps  ->  th )  ->  ( ph  ->  ch ) ) ).
11:6,10:  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th )  ->.  ( ( ph  ->  ch )  <->  ( ps  ->  th ) ) ).
12:11:  |-  (. ( ph  <->  ps )  ->.  ( ( ch  <->  th )  ->  ( ( ph  ->  ch )  <->  ( ps  ->  th ) ) ) ).
qed:12:  |-  ( ( ph  <->  ps )  ->  ( ( ch  <->  th )  ->  ( ( ph  ->  ch )  <->  ( ps  ->  th ) ) ) )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  <->  ps )  ->  (
 ( ch  <->  th )  ->  (
 ( ph  ->  ch )  <->  ( ps  ->  th )
 ) ) )
 
Theoremimbi13VD 28695 Join three logical equivalences to form equivalence of implications. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi13 28315 is imbi13VD 28695 without virtual deductions and was automatically derived from imbi13VD 28695.
1::  |-  (. ( ph  <->  ps )  ->.  ( ph  <->  ps ) ).
2::  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th )  ->.  ( ch  <->  th ) ).
3::  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th ) ,. ( ta  <->  et )  ->.  ( ta  <->  et ) ).
4:2,3:  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th ) ,. ( ta  <->  et )  ->.  ( ( ch  ->  ta )  <->  ( th  ->  et ) ) ).
5:1,4:  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th ) ,. ( ta  <->  et )  ->.  ( ( ph  ->  ( ch  ->  ta ) )  <->  ( ps  ->  ( th  ->  et ) ) ) ).
6:5:  |-  (. ( ph  <->  ps ) ,. ( ch  <->  th )  ->.  ( ( ta  <->  et )  ->  ( ( ph  ->  ( ch  ->  ta ) )  <->  ( ps  ->  ( th  ->  et ) ) ) ) ).
7:6:  |-  (. ( ph  <->  ps )  ->.  ( ( ch  <->  th )  ->  ( ( ta  <->  et )  ->  ( ( ph  ->  ( ch  ->  ta ) )  <->  ( ps  ->  ( th  ->  et ) ) ) ) ) ).
qed:7:  |-  ( ( ph  <->  ps )  ->  ( ( ch  <->  th )  ->  ( ( ta  <->  et )  ->  ( ( ph  ->  ( ch  ->  ta ) )  <->  ( ps  ->  ( th  ->  et ) ) ) ) ) )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( ph  <->  ps )  ->  (
 ( ch  <->  th )  ->  (
 ( ta  <->  et )  ->  (
 ( ph  ->  ( ch 
 ->  ta ) )  <->  ( ps  ->  ( th  ->  et )
 ) ) ) ) )
 
Theoremsbcim2gVD 28696 Distribution of class substitution over a left-nested implication. Similar to sbcimg 3162. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcim2g 28334 is sbcim2gVD 28696 without virtual deductions and was automatically derived from sbcim2gVD 28696.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2::  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ).
3:1,2:  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ).
4:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ps  ->  ch )  <->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
5:3,4:  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
6:5:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ).
7::  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
8:4,7:  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ).
9:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ) ).
10:8,9:  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ).
11:10:  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ) ).
12:6,11:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ).
qed:12:  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  (
 [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  (
 [. A  /  x ].
 ps  ->  [. A  /  x ].
 ch ) ) ) )
 
TheoremsbcbiVD 28697 Implication form of sbcbiiOLD 3177. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcbi 28335 is sbcbiVD 28697 without virtual deductions and was automatically derived from sbcbiVD 28697.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2::  |-  (. A  e.  B ,. A. x ( ph  <->  ps )  ->.  A. x ( ph  <->  ps ) ).
3:1,2:  |-  (. A  e.  B ,. A. x ( ph  <->  ps )  ->.  [. A  /  x ]. ( ph  <->  ps ) ).
4:1,3:  |-  (. A  e.  B ,. A. x ( ph  <->  ps )  ->.  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps ) ).
5:4:  |-  (. A  e.  B  ->.  ( A. x ( ph  <->  ps )  ->  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps ) ) ).
qed:5:  |-  ( A  e.  B  ->  ( A. x ( ph  <->  ps )  ->  ( [. A  /  x ]. ph  <->  [. A  /  x ]. ps ) ) )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  (
 A. x ( ph  <->  ps )  ->  ( [. A  /  x ]. ph  <->  [. A  /  x ].
 ps ) ) )
 
TheoremtrsbcVD 28698* Formula-building inference rule for class substitution, substituting a class variable for the set variable of the transitivity predicate. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trsbc 28336 is trsbcVD 28698 without virtual deductions and was automatically derived from trsbcVD 28698.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
3:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  x  <->  y  e.  A ) ).
4:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. z  e.  x  <->  z  e.  A ) ).
5:1,2,3,4:  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ).
6:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) ) ).
7:5,6:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ).
8::  |-  ( ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
9:7,8:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
10::  |-  ( ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
11:10:  |-  A. x ( ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
12:1,11:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
13:9,12:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
14:13:  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
15:14:  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
16:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
17:15,16:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
18:17:  |-  (. A  e.  B  ->.  A. z ( [. A  /  x ]. A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
19:18:  |-  (. A  e.  B  ->.  ( A. z [. A  /  x ]. A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
20:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
21:19,20:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
22::  |-  ( Tr  A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
23:21,22:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A ) ).
24::  |-  ( Tr  x  <->  A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
25:24:  |-  A. x ( Tr  x  <->  A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
26:1,25:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
27:23,26:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. Tr  x  <->  Tr  A ) ).
qed:27:  |-  ( A  e.  B  ->  ( [. A  /  x ]. Tr  x  <->  Tr  A ) )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  B  ->  (
 [. A  /  x ].
 Tr  x  <->  Tr  A ) )
 
TheoremtruniALTVD 28699* The union of a class of transitive sets is transitive. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. truniALT 28337 is truniALTVD 28699 without virtual deductions and was automatically derived from truniALTVD 28699.
1::  |-  (. A. x  e.  A Tr  x  ->.  A. x  e.  A  Tr  x ).
2::  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  ( z  e.  y  /\  y  e.  U. A ) ).
3:2:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  z  e.  y ).
4:2:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  y  e.  U. A ).
5:4:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  E. q ( y  e.  q  /\  q  e.  A ) ).
6::  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  ( y  e.  q  /\  q  e.  A ) ).
7:6:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  y  e.  q ).
8:6:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  q  e.  A ).
9:1,8:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  [ q  /  x ] Tr  x ).
10:8,9:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  Tr  q ).
11:3,7,10:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  z  e.  q ).
12:11,8:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  z  e.  U. A ).
13:12:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  ( ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A ) ).
14:13:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  A. q ( ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A ) ).
15:14:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  ( E. q ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A ) ).
16:5,15:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  z  e.  U. A ).
17:16:  |-  (. A. x  e.  A Tr  x  ->.  ( ( z  e.  y  /\  y  e.  U. A )  ->  z  e.  U. A ) ).
18:17:  |-  (. A. x  e.  A Tr  x  ->.  A. z A. y ( ( z  e.  y  /\  y  e.  U. A )  ->  z  e.  U. A ) ).
19:18:  |-  (. A. x  e.  A Tr  x  ->.  Tr  U. A ).
qed:19:  |-  ( A. x  e.  A Tr  x  ->  Tr  U. A )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
 
Theoremee33VD 28700 Non-virtual deduction form of e33 28555. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ee33 28316 is ee33VD 28700 without virtual deductions and was automatically derived from ee33VD 28700.
h1::  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
h2::  |-  ( ph  ->  ( ps  ->  ( ch  ->  ta ) ) )
h3::  |-  ( th  ->  ( ta  ->  et ) )
4:1,3:  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  ->  et ) ) ) )
5:4:  |-  ( ta  ->  ( ph  ->  ( ps  ->  ( ch  ->  et ) ) ) )
6:2,5:  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ph  ->  ( ps  ->  ( ch  ->  et ) ) ) ) ) )
7:6:  |-  ( ps  ->  ( ch  ->  ( ph  ->  ( ps  ->  ( ch  ->  et ) ) ) ) )
8:7:  |-  ( ch  ->  ( ph  ->  ( ps  ->  ( ch  ->  et ) ) ) )
qed:8:  |-  ( ph  ->  ( ps  ->  ( ch  ->  et ) ) )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )   &    |-  ( ph  ->  ( ps  ->  ( ch  ->  ta ) ) )   &    |-  ( th  ->  ( ta  ->  et ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  et ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32447
  Copyright terms: Public domain < Previous  Next >