HomeHome Metamath Proof Explorer
Theorem List (p. 291 of 310)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21328)
  Hilbert Space Explorer  Hilbert Space Explorer
(21329-22851)
  Users' Mathboxes  Users' Mathboxes
(22852-30955)
 

Theorem List for Metamath Proof Explorer - 29001-29100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlhpexle3lem 29001* There exists atom under a co-atom different from any 3 other atoms. TODO: study if adant*,simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  /\  ( X  .<_  W  /\  Y  .<_  W  /\  Z  .<_  W ) )  ->  E. p  e.  A  ( p  .<_  W  /\  ( p  =/=  X  /\  p  =/=  Y  /\  p  =/=  Z ) ) )
 
Theoremlhpexle3 29002* There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  ( p  .<_  W 
 /\  ( p  =/= 
 X  /\  p  =/=  Y 
 /\  p  =/=  Z ) ) )
 
Theoremlhpex2leN 29003* There exist at least two different atoms under a co-atom. This allows us to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  E. q  e.  A  ( p  .<_  W 
 /\  q  .<_  W  /\  p  =/=  q ) )
 
Theoremlhpoc 29004 The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  ._|_  =  ( oc `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( K  e.  HL  /\  W  e.  B )  ->  ( W  e.  H  <->  (  ._|_  `  W )  e.  A )
 )
 
Theoremlhpoc2N 29005 The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  ._|_  =  ( oc `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( K  e.  HL  /\  W  e.  B )  ->  ( W  e.  A  <->  (  ._|_  `  W )  e.  H )
 )
 
Theoremlhpocnle 29006 The orthocomplement of a co-atom is not under it. (Contributed by NM, 22-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 ._|_  =  ( oc `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  -.  (  ._|_  `  W )  .<_  W )
 
Theoremlhpocat 29007 The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.)
 |-  ._|_  =  ( oc `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  ._|_  `  W )  e.  A )
 
Theoremlhpocnel 29008 The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 ._|_  =  ( oc `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( K  e.  HL  /\  W  e.  H ) 
 ->  ( (  ._|_  `  W )  e.  A  /\  -.  (  ._|_  `  W ) 
 .<_  W ) )
 
Theoremlhpocnel2 29009 The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  P  =  ( ( oc `  K ) `  W )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
 
Theoremlhpjat1 29010 The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 18-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  .1.  =  ( 1. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( W  .\/  P )  =  .1.  )
 
Theoremlhpjat2 29011 The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 4-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  .1.  =  ( 1. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  W )  =  .1.  )
 
Theoremlhpj1 29012 The join of a co-atom (hyperplane) and an element not under it is the lattice unit. (Contributed by NM, 7-Dec-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  .1.  =  ( 1. `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 ->  ( W  .\/  X )  =  .1.  )
 
Theoremlhpmcvr 29013 The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  C  =  (  <o  `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  ( X  ./\ 
 W ) C X )
 
Theoremlhpmcvr2 29014* Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. p  e.  A  ( -.  p  .<_  W  /\  ( p 
 .\/  ( X  ./\  W ) )  =  X ) )
 
Theoremlhpmcvr3 29015 Specialization of lhpmcvr2 29014. TODO: Use this to simplify many uses of  ( P  .\/  ( X  ./\  W ) )  =  X to become  P  .<_  X. (Contributed by NM, 6-Apr-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) 
 ->  ( P  .<_  X  <->  ( P  .\/  ( X  ./\  W ) )  =  X ) )
 
Theoremlhpmcvr4N 29016 Specialization of lhpmcvr2 29014. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X  e.  B  /\  -.  X  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( Y  e.  B  /\  ( X  ./\  Y )  .<_  W 
 /\  P  .<_  X ) )  ->  -.  P  .<_  Y )
 
Theoremlhpmcvr5N 29017* Specialization of lhpmcvr2 29014. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X  ./\  Y )  .<_  W ) )  ->  E. p  e.  A  ( -.  p  .<_  W  /\  -.  p  .<_  Y  /\  ( p 
 .\/  ( X  ./\  W ) )  =  X ) )
 
Theoremlhpmcvr6N 29018* Specialization of lhpmcvr2 29014. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( Y  e.  B  /\  ( X  ./\  Y )  .<_  W ) )  ->  E. p  e.  A  ( -.  p  .<_  W  /\  -.  p  .<_  Y  /\  p  .<_  X ) )
 
Theoremlhpm0atN 29019 If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  X  =/=  .0.  /\  ( X  ./\  W )  =  .0.  ) ) 
 ->  X  e.  A )
 
Theoremlhpmat 29020 An element covered by the lattice unit, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |-  ./\  =  ( meet `  K )   &    |- 
 .0.  =  ( 0. `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  ./\  W )  =  .0.  )
 
Theoremlhpmatb 29021 An element covered by the lattice unit, when conjoined with an atom, equals zero iff the atom is not under it. (Contributed by NM, 15-Jun-2013.)
 |-  .<_  =  ( le `  K )   &    |-  ./\  =  ( meet `  K )   &    |- 
 .0.  =  ( 0. `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A )  ->  ( -.  P  .<_  W  <->  ( P  ./\  W )  =  .0.  )
 )
 
Theoremlhp2at0 29022 Join and meet with different atoms under co-atom  W. (Contributed by NM, 15-Jun-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) ) 
 ->  ( ( P  .\/  U )  ./\  V )  =  .0.  )
 
Theoremlhp2atnle 29023 Inequality for 2 different atoms under co-atom  W. (Contributed by NM, 17-Jun-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) ) 
 ->  -.  V  .<_  ( P 
 .\/  U ) )
 
Theoremlhp2atne 29024 Inequality for joins with 2 different atoms under co-atom  W. (Contributed by NM, 22-Jul-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  ( ( U  e.  A  /\  U  .<_  W ) 
 /\  ( V  e.  A  /\  V  .<_  W ) )  /\  U  =/=  V )  ->  ( P  .\/  U )  =/=  ( Q  .\/  V ) )
 
Theoremlhp2at0nle 29025 Inequality for 2 different atoms (or an atom and zero) under co-atom  W. (Contributed by NM, 28-Jul-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  U  =/=  V )  /\  ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) ) 
 ->  -.  V  .<_  ( P 
 .\/  U ) )
 
Theoremlhp2at0ne 29026 Inequality for joins with 2 different atoms (or an atom and zero) under co-atom  W. (Contributed by NM, 28-Jul-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  ( ( ( U  e.  A  \/  U  =  .0.  )  /\  U  .<_  W )  /\  ( V  e.  A  /\  V  .<_  W ) ) 
 /\  U  =/=  V )  ->  ( P  .\/  U )  =/=  ( Q 
 .\/  V ) )
 
Theoremlhpelim 29027 Eliminate an atom not under a lattice hyperplane. TODO: Look at proofs using lhpmat 29020 to see if this can be used to shorten them. (Contributed by NM, 27-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B )  ->  ( ( P  .\/  ( X  ./\ 
 W ) )  ./\  W )  =  ( X 
 ./\  W ) )
 
Theoremlhpmod2i2 29028 Modular law for hyperplanes analogous to atmod2i2 28852 for atoms. (Contributed by NM, 9-Feb-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  Y  e.  B )  /\  Y  .<_  X ) 
 ->  ( ( X  ./\  W )  .\/  Y )  =  ( X  ./\  ( W  .\/  Y ) ) )
 
Theoremlhpmod6i1 29029 Modular law for hyperplanes analogous to complement of atmod2i1 28851 for atoms. (Contributed by NM, 1-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  Y  e.  B )  /\  X  .<_  W ) 
 ->  ( X  .\/  ( Y  ./\  W ) )  =  ( ( X 
 .\/  Y )  ./\  W ) )
 
Theoremlhprelat3N 29030* The Hilbert lattice is relatively atomic with respect to co-atoms (lattice hyperplanes). Dual version of hlrelat3 28402. (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .<  =  ( lt `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  C  =  (  <o  `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  E. w  e.  H  ( X  .<_  ( Y  ./\  w )  /\  ( Y  ./\  w ) C Y ) )
 
Theoremcdlemb2 29031* Given two atoms not under the fiducial (reference) co-atom  W, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 30-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) )
 
Theoremlhple 29032 Property of a lattice element under a co-atom. (Contributed by NM, 28-Feb-2014.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  ( ( P  .\/  X )  ./\  W )  =  X )
 
Theoremlhpat 29033 Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  ( ( P  .\/  Q )  ./\  W )  e.  A )
 
Theoremlhpat4N 29034 Property of an atom under a co-atom. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  ( ( P  .\/  U )  ./\  W )  =  U )
 
Theoremlhpat2 29035 Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 21-Nov-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  R  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  R  e.  A )
 
Theoremlhpat3 29036 There is only one atom under both 
P  .\/  Q and co-atom  W. (Contributed by NM, 21-Nov-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  R  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) 
 /\  ( Q  e.  A  /\  S  e.  A )  /\  ( P  =/=  Q 
 /\  S  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( -.  S  .<_  W  <->  S  =/=  R ) )
 
Theorem4atexlemk 29037 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  K  e.  HL )
 
Theorem4atexlemw 29038 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  W  e.  H )
 
Theorem4atexlempw 29039 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
 
Theorem4atexlemp 29040 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  P  e.  A )
 
Theorem4atexlemq 29041 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  Q  e.  A )
 
Theorem4atexlems 29042 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  S  e.  A )
 
Theorem4atexlemt 29043 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  T  e.  A )
 
Theorem4atexlemutvt 29044 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  ( U  .\/  T )  =  ( V  .\/  T )
 )
 
Theorem4atexlempnq 29045 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  P  =/=  Q )
 
Theorem4atexlemnslpq 29046 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  -.  S  .<_  ( P  .\/  Q )
 )
 
Theorem4atexlemkl 29047 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  K  e.  Lat )
 
Theorem4atexlemkc 29048 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   =>    |-  ( ph  ->  K  e.  CvLat
 )
 
Theorem4atexlemwb 29049 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  H  =  ( LHyp `  K )   =>    |-  ( ph  ->  W  e.  ( Base `  K )
 )
 
Theorem4atexlempsb 29050 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .\/ 
 =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  ( ph  ->  ( P  .\/  S )  e.  ( Base `  K )
 )
 
Theorem4atexlemqtb 29051 Lemma for 4atexlem7 29065. (Contributed by NM, 24-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .\/ 
 =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  ( ph  ->  ( Q  .\/  T )  e.  ( Base `  K )
 )
 
Theorem4atexlempns 29052 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ph  ->  P  =/=  S )
 
Theorem4atexlemswapqr 29053 Lemma for 4atexlem7 29065. Swap  Q and  R, so that theorems involving  C can be reused for  D. Note that  U must be expanded because it involves  Q. (Contributed by NM, 25-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  ( ph  ->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( S  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W  /\  ( P  .\/  Q )  =  ( R  .\/  Q ) )  /\  ( T  e.  A  /\  ( ( ( P 
 .\/  R )  ./\  W ) 
 .\/  T )  =  ( V  .\/  T )
 ) )  /\  ( P  =/=  R  /\  -.  S  .<_  ( P  .\/  R ) ) ) )
 
Theorem4atexlemu 29054 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  ( ph  ->  U  e.  A )
 
Theorem4atexlemv 29055 Lemma for 4atexlem7 29065. (Contributed by NM, 23-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  S )  ./\  W )   =>    |-  ( ph  ->  V  e.  A )
 
Theorem4atexlemunv 29056 Lemma for 4atexlem7 29065. (Contributed by NM, 21-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  S )  ./\  W )   =>    |-  ( ph  ->  U  =/=  V )
 
Theorem4atexlemtlw 29057 Lemma for 4atexlem7 29065. (Contributed by NM, 24-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  S )  ./\  W )   =>    |-  ( ph  ->  T  .<_  W )
 
Theorem4atexlemntlpq 29058 Lemma for 4atexlem7 29065. (Contributed by NM, 24-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  S )  ./\  W )   =>    |-  ( ph  ->  -.  T  .<_  ( P  .\/  Q )
 )
 
Theorem4atexlemc 29059 Lemma for 4atexlem7 29065. (Contributed by NM, 24-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  S )  ./\  W )   &    |-  C  =  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )   =>    |-  ( ph  ->  C  e.  A )
 
Theorem4atexlemnclw 29060 Lemma for 4atexlem7 29065. (Contributed by NM, 24-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  S )  ./\  W )   &    |-  C  =  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )   =>    |-  ( ph  ->  -.  C  .<_  W )
 
Theorem4atexlemex2 29061* Lemma for 4atexlem7 29065. Show that when  C  =/=  S,  C satisfies the existence condition of the consequent. (Contributed by NM, 25-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  S )  ./\  W )   &    |-  C  =  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )   =>    |-  ( ( ph  /\  C  =/=  S ) 
 ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
 
Theorem4atexlemcnd 29062 Lemma for 4atexlem7 29065. (Contributed by NM, 24-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  S )  ./\  W )   &    |-  C  =  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )   &    |-  D  =  ( ( R  .\/  T )  ./\  ( P  .\/  S ) )   =>    |-  ( ph  ->  C  =/=  D )
 
Theorem4atexlemex4 29063* Lemma for 4atexlem7 29065. Show that when  C  =  S,  D satisfies the existence condition of the consequent. (Contributed by NM, 26-Nov-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( S  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( T  e.  A  /\  ( U  .\/  T )  =  ( V  .\/  T ) ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  S )  ./\  W )   &    |-  C  =  ( ( Q  .\/  T )  ./\  ( P  .\/  S ) )   &    |-  D  =  ( ( R  .\/  T )  ./\  ( P  .\/  S ) )   =>    |-  ( ( ph  /\  C  =  S ) 
 ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
 
Theorem4atexlemex6 29064* Lemma for 4atexlem7 29065. (Contributed by NM, 25-Nov-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  S  e.  A )  /\  ( ( P  .\/  R )  =  ( Q 
 .\/  R )  /\  P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P  .\/  z )  =  ( S  .\/  z ) ) )
 
Theorem4atexlem7 29065* Whenever there are at least 4 atoms under  P  .\/  Q (specifically,  P,  Q,  r, and  ( P  .\/  Q
)  ./\  W), there are also at least 4 atoms under  P  .\/  S. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p  \/ q/0 and hence p  \/ s/0 contains at least four atoms..." Note that by cvlsupr2 28334, our  ( P  .\/  r )  =  ( Q  .\/  r ) is a shorter way to express  r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ). With a longer proof, the condition  -.  S  .<_  ( P  .\/  Q ) could be eliminated (see 4atex 29066), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  S  e.  A )  /\  ( P  =/=  Q 
 /\  -.  S  .<_  ( P  .\/  Q )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P 
 .\/  z )  =  ( S  .\/  z
 ) ) )
 
Theorem4atex 29066* Whenever there are at least 4 atoms under  P  .\/  Q (specifically,  P,  Q,  r, and  ( P  .\/  Q
)  ./\  W), there are also at least 4 atoms under  P  .\/  S. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p  \/ q/0 and hence p  \/ s/0 contains at least four atoms..." Note that by cvlsupr2 28334, our  ( P  .\/  r )  =  ( Q  .\/  r ) is a shorter way to express  r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ). (Contributed by NM, 27-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  S  e.  A )  /\  ( P  =/=  Q 
 /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( P 
 .\/  z )  =  ( S  .\/  z
 ) ) )
 
Theorem4atex2 29067* More general version of 4atex 29066 for a line  S 
.\/  T not necessarily connected to  P  .\/  Q. (Contributed by NM, 27-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  T  e.  A  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) ) ) ) 
 ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z ) ) )
 
Theorem4atex2-0aOLDN 29068* Same as 4atex2 29067 except that  S is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S 
 .\/  z )  =  ( T  .\/  z
 ) ) )
 
Theorem4atex2-0bOLDN 29069* Same as 4atex2 29067 except that  T is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) ) ) ) 
 ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z ) ) )
 
Theorem4atex2-0cOLDN 29070* Same as 4atex2 29067 except that  S and 
T are zero. TODO: do we need this one or 4atex2-0aOLDN 29068 or 4atex2-0bOLDN 29069? (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) ) ) ) 
 ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z ) ) )
 
Theorem4atex3 29071* More general version of 4atex 29066 for a line  S 
.\/  T not necessarily connected to  P  .\/  Q. (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  ( T  e.  A  /\  S  =/=  T )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/=  S  /\  z  =/=  T  /\  z  .<_  ( S  .\/  T )
 ) ) )
 
Theoremlautset 29072* The set of lattice automorphisms. (Contributed by NM, 11-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  ( K  e.  A  ->  I  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
  y ) ) ) } )
 
Theoremislaut 29073* The predictate "is a lattice automorphism." (Contributed by NM, 11-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  ( K  e.  A  ->  ( F  e.  I  <->  ( F : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <-> 
 ( F `  x )  .<_  ( F `  y ) ) ) ) )
 
Theoremlautle 29074 Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  ( ( ( K  e.  V  /\  F  e.  I )  /\  ( X  e.  B  /\  Y  e.  B )
 )  ->  ( X  .<_  Y  <->  ( F `  X )  .<_  ( F `
  Y ) ) )
 
Theoremlaut1o 29075 A lattice automorphism is one-to-one and onto. (Contributed by NM, 19-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  (
 ( K  e.  A  /\  F  e.  I ) 
 ->  F : B -1-1-onto-> B )
 
Theoremlaut11 29076 One-to-one property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  (
 ( ( K  e.  V  /\  F  e.  I
 )  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( ( F `  X )  =  ( F `  Y )  <->  X  =  Y ) )
 
Theoremlautcl 29077 A lattice automorphism value belongs to the base set. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  (
 ( ( K  e.  V  /\  F  e.  I
 )  /\  X  e.  B )  ->  ( F `
  X )  e.  B )
 
TheoremlautcnvclN 29078 Reverse closure of a lattice automorphism. (Contributed by NM, 25-May-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  (
 ( ( K  e.  V  /\  F  e.  I
 )  /\  X  e.  B )  ->  ( `' F `  X )  e.  B )
 
Theoremlautcnvle 29079 Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  ( ( ( K  e.  V  /\  F  e.  I )  /\  ( X  e.  B  /\  Y  e.  B )
 )  ->  ( X  .<_  Y  <->  ( `' F `  X )  .<_  ( `' F `  Y ) ) )
 
Theoremlautcnv 29080 The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.)
 |-  I  =  ( LAut `  K )   =>    |-  (
 ( K  e.  V  /\  F  e.  I ) 
 ->  `' F  e.  I
 )
 
Theoremlautlt 29081 Less-than property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<  =  ( lt `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B ) )  ->  ( X  .<  Y  <->  ( F `  X )  .<  ( F `
  Y ) ) )
 
Theoremlautcvr 29082 Covering property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  C  =  (  <o  `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B ) )  ->  ( X C Y  <->  ( F `  X ) C ( F `  Y ) ) )
 
Theoremlautj 29083 Meet property of a lattice automorphism. (Contributed by NM, 25-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  (
 ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B )
 )  ->  ( F `  ( X  .\/  Y ) )  =  (
 ( F `  X )  .\/  ( F `  Y ) ) )
 
Theoremlautm 29084 Meet property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  (
 ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B )
 )  ->  ( F `  ( X  ./\  Y ) )  =  ( ( F `  X ) 
 ./\  ( F `  Y ) ) )
 
Theoremlauteq 29085* A lattice automorphism argument is equal to its value if all atoms are equal to their values. (Contributed by NM, 24-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  (
 ( ( K  e.  HL  /\  F  e.  I  /\  X  e.  B ) 
 /\  A. p  e.  A  ( F `  p )  =  p )  ->  ( F `  X )  =  X )
 
Theoremidlaut 29086 The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  I  =  ( LAut `  K )   =>    |-  ( K  e.  A  ->  (  _I  |`  B )  e.  I )
 
Theoremlautco 29087 The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
 |-  I  =  ( LAut `  K )   =>    |-  (
 ( K  e.  V  /\  F  e.  I  /\  G  e.  I )  ->  ( F  o.  G )  e.  I )
 
TheorempautsetN 29088* The set of projective automorphisms. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
 |-  S  =  ( PSubSp `  K )   &    |-  M  =  ( PAut `  K )   =>    |-  ( K  e.  B  ->  M  =  { f  |  ( f : S -1-1-onto-> S  /\  A. x  e.  S  A. y  e.  S  ( x  C_  y  <->  ( f `  x )  C_  ( f `
  y ) ) ) } )
 
TheoremispautN 29089* The predictate "is a projective automorphism." (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
 |-  S  =  ( PSubSp `  K )   &    |-  M  =  ( PAut `  K )   =>    |-  ( K  e.  B  ->  ( F  e.  M  <->  ( F : S
 -1-1-onto-> S  /\  A. x  e.  S  A. y  e.  S  ( x  C_  y 
 <->  ( F `  x )  C_  ( F `  y ) ) ) ) )
 
Syntaxcldil 29090 Extend class notation with set of all lattice dilations.
 class  LDil
 
Syntaxcltrn 29091 Extend class notation with set of all lattice translations.
 class  LTrn
 
SyntaxcdilN 29092 Extend class notation with set of all dilations.
 class  Dil
 
SyntaxctrnN 29093 Extend class notation with set of all translations.
 class  Trn
 
Definitiondf-ldil 29094* Define set of all lattice dilations. Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
 |-  LDil  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  { f  e.  ( LAut `  k )  |  A. x  e.  ( Base `  k ) ( x ( le `  k
 ) w  ->  (
 f `  x )  =  x ) } )
 )
 
Definitiondf-ltrn 29095* Define set of all lattice translations. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
 |-  LTrn  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  { f  e.  ( (
 LDil `  k ) `  w )  |  A. p  e.  ( Atoms `  k ) A. q  e.  ( Atoms `  k ) ( ( -.  p ( le `  k ) w  /\  -.  q
 ( le `  k
 ) w )  ->  ( ( p (
 join `  k ) ( f `  p ) ) ( meet `  k
 ) w )  =  ( ( q (
 join `  k ) ( f `  q ) ) ( meet `  k
 ) w ) ) } ) )
 
Definitiondf-dilN 29096* Define set of all dilations. Definition of dilation in [Crawley] p. 111. (Contributed by NM, 30-Jan-2012.)
 |-  Dil  =  ( k  e.  _V  |->  ( d  e.  ( Atoms `  k )  |->  { f  e.  ( PAut `  k )  |  A. x  e.  ( PSubSp `  k ) ( x 
 C_  ( ( WAtoms `  k ) `  d
 )  ->  ( f `  x )  =  x ) } ) )
 
Definitiondf-trnN 29097* Define set of all translations. Definition of translation in [Crawley] p. 111. (Contributed by NM, 4-Feb-2012.)
 |-  Trn  =  ( k  e.  _V  |->  ( d  e.  ( Atoms `  k )  |->  { f  e.  ( ( Dil `  k ) `  d )  |  A. q  e.  ( ( WAtoms `
  k ) `  d ) A. r  e.  ( ( WAtoms `  k
 ) `  d )
 ( ( q ( + P `  k
 ) ( f `  q ) )  i^i  ( ( _|_ P `  k ) `  { d } ) )  =  ( ( r ( + P `  k
 ) ( f `  r ) )  i^i  ( ( _|_ P `  k ) `  { d } ) ) }
 ) )
 
Theoremldilfset 29098* The mapping from fiducial co-atom  w to its set of lattice dilations. (Contributed by NM, 11-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  (
 LAut `  K )   =>    |-  ( K  e.  C  ->  ( LDil `  K )  =  ( w  e.  H  |->  { f  e.  I  |  A. x  e.  B  ( x  .<_  w  ->  ( f `  x )  =  x ) } ) )
 
Theoremldilset 29099* The set of lattice dilations for a fiducial co-atom  W. (Contributed by NM, 11-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  (
 LAut `  K )   &    |-  D  =  ( ( LDil `  K ) `  W )   =>    |-  ( ( K  e.  C  /\  W  e.  H )  ->  D  =  { f  e.  I  |  A. x  e.  B  ( x  .<_  W  ->  ( f `  x )  =  x ) }
 )
 
Theoremisldil 29100* The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  I  =  (
 LAut `  K )   &    |-  D  =  ( ( LDil `  K ) `  W )   =>    |-  ( ( K  e.  C  /\  W  e.  H )  ->  ( F  e.  D  <->  ( F  e.  I  /\  A. x  e.  B  ( x  .<_  W 
 ->  ( F `  x )  =  x )
 ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-30955
  Copyright terms: Public domain < Previous  Next >