HomeHome Metamath Proof Explorer
Theorem List (p. 293 of 315)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21494)
  Hilbert Space Explorer  Hilbert Space Explorer
(21495-23017)
  Users' Mathboxes  Users' Mathboxes
(23018-31433)
 

Theorem List for Metamath Proof Explorer - 29201-29300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdalem61 29201 Lemma for dath 29204. Show that atoms  D,  E, and  F lie on the same line (axis of perspectivity). Eliminate hypotheses containing dummy atoms  c and  d. (Contributed by NM, 11-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ( ps 
 <->  ( ( c  e.  A  /\  d  e.  A )  /\  -.  c  .<_  Y  /\  (
 d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
 ) ) ) )   &    |-  ./\ 
 =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )   =>    |-  ( ( ph  /\  Y  =  Z  /\  ps )  ->  F  .<_  ( D  .\/  E )
 )
 
Theoremdalem62 29202 Lemma for dath 29204. Eliminate the condition  ps containing dummy variables  c and  d. (Contributed by NM, 11-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )   =>    |-  ( ( ph  /\  Y  =  Z ) 
 ->  F  .<_  ( D  .\/  E ) )
 
Theoremdalem63 29203 Lemma for dath 29204. Combine the cases where  Y and  Z are different planes with the case where  Y and 
Z are the same plane. (Contributed by NM, 11-Aug-2012.)
 |-  ( ph 
 <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K )
 )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  (
 ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q 
 .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )   &    |-  .<_  =  ( le `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  Y  =  ( ( P  .\/  Q )  .\/  R )   &    |-  Z  =  ( ( S  .\/  T )  .\/  U )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )   =>    |-  ( ph  ->  F 
 .<_  ( D  .\/  E ) )
 
Theoremdath 29204 Desargues' Theorem of projective geometry (proved for a Hilbert lattice). Assume each triple of atoms (points)  P Q R and  S T U forms a triangle (i.e. determines a plane). Assume that lines  P S,  Q T, and  R U meet at a "center of perspectivity"  C. (We also assume that  C is not on any of the 6 lines forming the two triangles.) Then the atoms 
D  =  ( P 
.\/  Q )  ./\  ( S  .\/  T ),  E  =  ( Q  .\/  R ) 
./\  ( T  .\/  U ),  F  =  ( R  .\/  P ) 
./\  ( U  .\/  S ) are colinear, forming an "axis of perspectivity".

Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we don't assume  C is an atom to make this theorem slightly more general for easier future use. However, we prove that 
C must be an atom in dalemcea 29128.

For a visual demonstration, see the "Desargue's Theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html. The points I, J, and K there define the axis of perspectivity.

See theorem dalaw 29354 for Desargues Law, which eliminates all of the preconditions on the atoms except for central perspectivity. (Contributed by NM, 20-Aug-2012.)

 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )   =>    |-  ( ( ( ( K  e.  HL  /\  C  e.  B ) 
 /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) 
 /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P  .\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )
 )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) 
 ->  F  .<_  ( D  .\/  E ) )
 
Theoremdath2 29205 Version of Desargues' Theorem dath 29204 with a different variable ordering. (Contributed by NM, 7-Oct-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  O  =  ( LPlanes `  K )   &    |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )   &    |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )   =>    |-  ( ( ( ( K  e.  HL  /\  C  e.  B ) 
 /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) 
 /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P  .\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )
 )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )
 )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
 .\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) 
 ->  D  .<_  ( E  .\/  F ) )
 
Theoremlineset 29206* The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   =>    |-  ( K  e.  B  ->  N  =  { s  | 
 E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  s  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) } ) } )
 
Theoremisline 29207* The predicate "is a line". (Contributed by NM, 19-Sep-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   =>    |-  ( K  e.  D  ->  ( X  e.  N  <->  E. q  e.  A  E. r  e.  A  ( q  =/=  r  /\  X  =  { p  e.  A  |  p  .<_  ( q  .\/  r ) } ) ) )
 
Theoremislinei 29208* Condition implying "is a line". (Contributed by NM, 3-Feb-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   =>    |-  (
 ( ( K  e.  D  /\  Q  e.  A  /\  R  e.  A ) 
 /\  ( Q  =/=  R 
 /\  X  =  { p  e.  A  |  p  .<_  ( Q  .\/  R ) } ) ) 
 ->  X  e.  N )
 
TheorempointsetN 29209* The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  P  =  ( Points `  K )   =>    |-  ( K  e.  B  ->  P  =  { p  |  E. a  e.  A  p  =  { a } } )
 
TheoremispointN 29210* The predicate "is a point". (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  P  =  ( Points `  K )   =>    |-  ( K  e.  D  ->  ( X  e.  P  <->  E. a  e.  A  X  =  { a } ) )
 
TheorematpointN 29211 The singleton of an atom is a point. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  P  =  ( Points `  K )   =>    |-  (
 ( K  e.  D  /\  X  e.  A ) 
 ->  { X }  e.  P )
 
Theorempsubspset 29212* The set of projective subspaces in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  ( K  e.  B  ->  S  =  { s  |  ( s  C_  A  /\  A. p  e.  s  A. q  e.  s  A. r  e.  A  ( r  .<_  ( p 
 .\/  q )  ->  r  e.  s )
 ) } )
 
Theoremispsubsp 29213* The predicate "is a projective subspace". (Contributed by NM, 2-Oct-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. p  e.  X  A. q  e.  X  A. r  e.  A  ( r  .<_  ( p  .\/  q )  ->  r  e.  X ) ) ) )
 
Theoremispsubsp2 29214* The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q 
 .\/  r )  ->  p  e.  X )
 ) ) )
 
Theorempsubspi 29215* Property of a projective subspace. (Contributed by NM, 13-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( ( K  e.  D  /\  X  e.  S  /\  P  e.  A ) 
 /\  E. q  e.  X  E. r  e.  X  P  .<_  ( q  .\/  r ) )  ->  P  e.  X )
 
Theorempsubspi2N 29216 Property of a projective subspace. (Contributed by NM, 13-Jan-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( ( K  e.  D  /\  X  e.  S  /\  P  e.  A ) 
 /\  ( Q  e.  X  /\  R  e.  X  /\  P  .<_  ( Q  .\/  R ) ) )  ->  P  e.  X )
 
Theorem0psubN 29217 The empty set is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
 |-  S  =  ( PSubSp `  K )   =>    |-  ( K  e.  V  ->  (/)  e.  S )
 
TheoremsnatpsubN 29218 The singleton of an atom is a projective subspace. (Contributed by NM, 9-Sep-2013.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( K  e.  AtLat  /\  P  e.  A ) 
 ->  { P }  e.  S )
 
TheorempointpsubN 29219 A point (singleton of an atom) is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
 |-  P  =  ( Points `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( K  e.  AtLat  /\  X  e.  P ) 
 ->  X  e.  S )
 
TheoremlinepsubN 29220 A line is a projective subspace. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.)
 |-  N  =  ( Lines `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( K  e.  Lat  /\  X  e.  N ) 
 ->  X  e.  S )
 
TheorematpsubN 29221 The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  ( K  e.  V  ->  A  e.  S )
 
Theorempsubssat 29222 A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( K  e.  B  /\  X  e.  S ) 
 ->  X  C_  A )
 
TheorempsubatN 29223 A member of a projective subspace is an atom. (Contributed by NM, 4-Nov-2011.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  S  =  ( PSubSp `  K )   =>    |-  (
 ( K  e.  B  /\  X  e.  S  /\  Y  e.  X )  ->  Y  e.  A )
 
Theorempmapfval 29224* The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( K  e.  C  ->  M  =  ( x  e.  B  |->  { a  e.  A  |  a  .<_  x } )
 )
 
Theorempmapval 29225* Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( M `  X )  =  { a  e.  A  |  a  .<_  X }
 )
 
Theoremelpmap 29226 Member of a projective map. (Contributed by NM, 27-Jan-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( ( K  e.  C  /\  X  e.  B )  ->  ( P  e.  ( M `  X )  <->  ( P  e.  A  /\  P  .<_  X ) ) )
 
Theorempmapssat 29227 The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012.)
 |-  B  =  ( Base `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  C  /\  X  e.  B ) 
 ->  ( M `  X )  C_  A )
 
TheorempmapssbaN 29228 A weakening of pmapssat 29227 to shorten some proofs. (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  C  /\  X  e.  B ) 
 ->  ( M `  X )  C_  B )
 
Theorempmaple 29229 The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) 
 ->  ( X  .<_  Y  <->  ( M `  X )  C_  ( M `
  Y ) ) )
 
Theorempmap11 29230 The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
 |-  B  =  ( Base `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( M `  X )  =  ( M `  Y )  <->  X  =  Y ) )
 
Theorempmapat 29231 The projective map of an atom. (Contributed by NM, 25-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  P  e.  A ) 
 ->  ( M `  P )  =  { P } )
 
Theoremelpmapat 29232 Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  P  e.  A ) 
 ->  ( X  e.  ( M `  P )  <->  X  =  P ) )
 
Theorempmap0 29233 Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
 |-  .0.  =  ( 0. `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( K  e.  AtLat  ->  ( M `  .0.  )  =  (/) )
 
Theorempmapeq0 29234 A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012.)
 |-  B  =  ( Base `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( ( M `
  X )  =  (/) 
 <->  X  =  .0.  )
 )
 
Theorempmap1N 29235 Value of the projective map of a Hilbert lattice at lattice unit. Part of Theorem 15.5.1 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) (New usage is discouraged.)
 |-  .1.  =  ( 1. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( K  e.  OP  ->  ( M `  .1.  )  =  A )
 
Theorempmapsub 29236 The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 17-Oct-2011.)
 |-  B  =  ( Base `  K )   &    |-  S  =  ( PSubSp `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  Lat  /\  X  e.  B ) 
 ->  ( M `  X )  e.  S )
 
Theorempmapglbx 29237* The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb 29238, where we read  S as  S ( i ). Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
 |-  B  =  ( Base `  K )   &    |-  G  =  ( glb `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `
  { y  | 
 E. i  e.  I  y  =  S }
 ) )  =  |^|_ i  e.  I  ( M `
  S ) )
 
Theorempmapglb 29238* The projective map of the GLB of a set of lattice elements  S. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
 |-  B  =  ( Base `  K )   &    |-  G  =  ( glb `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `
  S ) )  =  |^|_ x  e.  S  ( M `  x ) )
 
Theorempmapglb2N 29239* The projective map of the GLB of a set of lattice elements  S. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. Allows  S  =  (/). (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  G  =  ( glb `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( ( K  e.  HL  /\  S  C_  B )  ->  ( M `  ( G `  S ) )  =  ( A  i^i  |^|_ x  e.  S  ( M `  x ) ) )
 
Theorempmapglb2xN 29240* The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N 29239, where we read  S as  S ( i ). Extension of Theorem 15.5.2 of [MaedaMaeda] p. 62 that allows  I  =  (/). (Contributed by NM, 21-Jan-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  G  =  ( glb `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  ( A  i^i  |^|_ i  e.  I  ( M `  S ) ) )
 
Theorempmapmeet 29241 The projective map of a meet. (Contributed by NM, 25-Jan-2012.)
 |-  B  =  ( Base `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  P  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( P `  ( X  ./\  Y ) )  =  ( ( P `
  X )  i^i  ( P `  Y ) ) )
 
Theoremisline2 29242* Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012.)
 |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  ( K  e.  Lat  ->  ( X  e.  N  <->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  X  =  ( M `
  ( p  .\/  q ) ) ) ) )
 
Theoremlinepmap 29243 A line described with a projective map. (Contributed by NM, 3-Feb-2012.)
 |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  Lat  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q ) 
 ->  ( M `  ( P  .\/  Q ) )  e.  N )
 
Theoremisline3 29244* Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  X  e.  B ) 
 ->  ( ( M `  X )  e.  N  <->  E. p  e.  A  E. q  e.  A  ( p  =/=  q  /\  X  =  ( p  .\/  q
 ) ) ) )
 
Theoremisline4N 29245* Definition of line in terms of original lattice elements. (Contributed by NM, 16-Jun-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  (
 Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  X  e.  B ) 
 ->  ( ( M `  X )  e.  N  <->  E. p  e.  A  p C X ) )
 
Theoremlneq2at 29246 A line equals the join of any two of its distinct points (atoms). (Contributed by NM, 29-Apr-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( P  .<_  X  /\  Q  .<_  X ) ) 
 ->  X  =  ( P 
 .\/  Q ) )
 
TheoremlnatexN 29247* There is an atom in a line different from any other. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  (
 Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( K  e.  HL  /\  X  e.  B  /\  ( M `  X )  e.  N )  ->  E. q  e.  A  ( q  =/=  P  /\  q  .<_  X ) )
 
TheoremlnjatN 29248* Given an atom in a line, there is another atom which when joined equals the line. (Contributed by NM, 30-Apr-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A ) 
 /\  ( ( M `
  X )  e.  N  /\  P  .<_  X ) )  ->  E. q  e.  A  ( q  =/= 
 P  /\  X  =  ( P  .\/  q ) ) )
 
TheoremlncvrelatN 29249 A lattice element covered by a line is an atom. (Contributed by NM, 28-Apr-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  (
 Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  B ) 
 /\  ( ( M `
  X )  e.  N  /\  P C X ) )  ->  P  e.  A )
 
Theoremlncvrat 29250 A line covers the atoms it contains. (Contributed by NM, 30-Apr-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A ) 
 /\  ( ( M `
  X )  e.  N  /\  P  .<_  X ) )  ->  P C X )
 
Theoremlncmp 29251 If two lines are comparable, they are equal. (Contributed by NM, 30-Apr-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  N  =  ( Lines `  K )   &    |-  M  =  (
 pmap `  K )   =>    |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( M `  X )  e.  N  /\  ( M `  Y )  e.  N )
 )  ->  ( X  .<_  Y  <->  X  =  Y ) )
 
Theorem2lnat 29252 Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
 |-  B  =  ( Base `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  (
 Lines `  K )   &    |-  F  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) 
 /\  ( ( F `
  X )  e.  N  /\  ( F `
  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
 .0.  ) )  ->  ( X  ./\  Y )  e.  A )
 
Theorem2atm2atN 29253 Two joins with a common atom have a nonzero meet. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
 |-  .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  ( ( R  .\/  P )  ./\  ( R  .\/  Q ) )  =/=  .0.  )
 
Theorem2llnma1b 29254 Generalization of 2llnma1 29255. (Contributed by NM, 26-Apr-2013.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A )  /\  -.  Q  .<_  ( P 
 .\/  X ) )  ->  ( ( P  .\/  X )  ./\  ( P  .\/  Q ) )  =  P )
 
Theorem2llnma1 29255 Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 11-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  -.  R  .<_  ( P 
 .\/  Q ) )  ->  ( ( Q  .\/  P )  ./\  ( Q  .\/  R ) )  =  Q )
 
Theorem2llnma3r 29256 Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 30-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .\/  R )  =/=  ( Q  .\/  R ) )  ->  (
 ( P  .\/  R )  ./\  ( Q  .\/  R ) )  =  R )
 
Theorem2llnma2 29257 Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 28-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( ( R  .\/  P )  ./\  ( R  .\/  Q ) )  =  R )
 
Theorem2llnma2rN 29258 Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 2-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( ( P  .\/  R )  ./\  ( Q  .\/  R ) )  =  R )
 
18.26.10  Construction of a vector space from a Hilbert lattice
 
Theoremcdlema1N 29259 A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 29-Apr-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  N  =  ( Lines `  K )   &    |-  F  =  ( pmap `  K )   =>    |-  (
 ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) 
 /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) 
 /\  ( ( R  =/=  P  /\  R  .<_  ( P  .\/  Q ) )  /\  ( P 
 .<_  X  /\  Q  .<_  Y )  /\  ( ( F `  Y )  e.  N  /\  ( X  ./\  Y )  e.  A  /\  -.  Q  .<_  X ) ) ) 
 ->  ( X  .\/  R )  =  ( X  .\/  Y ) )
 
Theoremcdlema2N 29260 A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 9-May-2012.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( ( R  =/=  P 
 /\  R  .<_  ( P 
 .\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  ( R  ./\ 
 X )  =  .0.  )
 
Theoremcdlemblem 29261 Lemma for cdlemb 29262. (Contributed by NM, 8-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  .1.  =  ( 1. `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .<  =  ( lt `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  V  =  ( ( P  .\/  Q )  ./\ 
 X )   =>    |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q ) 
 /\  ( X C  .1.  /\  -.  P  .<_  X 
 /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  ( u  =/=  V  /\  u  .<  X ) ) 
 /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u )
 ) ) )  ->  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
 
Theoremcdlemb 29262* Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  .1.  =  ( 1. `  K )   &    |-  C  =  (  <o  `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q ) 
 /\  ( X C  .1.  /\  -.  P  .<_  X 
 /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
 
Syntaxcpadd 29263 Extend class notation with projective subspace sum.
 class  + P
 
Definitiondf-padd 29264* Define projective sum of two subspaces (or more generally two sets of atoms), which is the union of all lines generated by pairs of atoms from each subspace. Lemma 16.2 of [MaedaMaeda] p. 68. For convenience, our definition is generalized to apply to empty sets. (Contributed by NM, 29-Dec-2011.)
 |-  + P  =  ( l  e.  _V  |->  ( m  e. 
 ~P ( Atoms `  l
 ) ,  n  e. 
 ~P ( Atoms `  l
 )  |->  ( ( m  u.  n )  u. 
 { p  e.  ( Atoms `  l )  | 
 E. q  e.  m  E. r  e.  n  p ( le `  l
 ) ( q (
 join `  l ) r ) } ) ) )
 
Theorempaddfval 29265* Projective subspace sum operation. (Contributed by NM, 29-Dec-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( K  e.  B  ->  .+  =  ( m  e.  ~P A ,  n  e.  ~P A  |->  ( ( m  u.  n )  u.  { p  e.  A  |  E. q  e.  m  E. r  e.  n  p  .<_  ( q  .\/  r ) } ) ) )
 
Theorempaddval 29266* Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( ( X  u.  Y )  u. 
 { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q  .\/  r ) } )
 )
 
Theoremelpadd 29267* Member of a projective subspace sum. (Contributed by NM, 29-Dec-2011.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( S  e.  ( X  .+  Y )  <->  ( ( S  e.  X  \/  S  e.  Y )  \/  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q  .\/  r
 ) ) ) ) )
 
Theoremelpaddn0 29268* Member of projective subspace sum of non-empty sets. (Contributed by NM, 3-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) ) 
 ->  ( S  e.  ( X  .+  Y )  <->  ( S  e.  A  /\  E. q  e.  X  E. r  e.  Y  S  .<_  ( q 
 .\/  r ) ) ) )
 
Theorempaddvaln0N 29269* Projective subspace sum operation value for non-empty sets. (Contributed by NM, 27-Jan-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) ) 
 ->  ( X  .+  Y )  =  { p  e.  A  |  E. q  e.  X  E. r  e.  Y  p  .<_  ( q 
 .\/  r ) }
 )
 
Theoremelpaddri 29270 Condition implying membership in a projective subspace sum. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  /\  ( Q  e.  X  /\  R  e.  Y )  /\  ( S  e.  A  /\  S  .<_  ( Q 
 .\/  R ) ) ) 
 ->  S  e.  ( X 
 .+  Y ) )
 
TheoremelpaddatriN 29271 Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( R  e.  X  /\  S  e.  A  /\  S  .<_  ( R  .\/  Q ) ) )  ->  S  e.  ( X  .+ 
 { Q } )
 )
 
Theoremelpaddat 29272* Membership in a projective subspace sum with a point. (Contributed by NM, 29-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  X  =/=  (/) )  ->  ( S  e.  ( X  .+  { Q }
 ) 
 <->  ( S  e.  A  /\  E. p  e.  X  S  .<_  ( p  .\/  Q ) ) ) )
 
TheoremelpaddatiN 29273* Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  Q  e.  A )  /\  ( X  =/=  (/)  /\  R  e.  ( X 
 .+  { Q } )
 ) )  ->  E. p  e.  X  R  .<_  ( p 
 .\/  Q ) )
 
Theoremelpadd2at 29274 Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  Lat  /\  Q  e.  A  /\  R  e.  A )  ->  ( S  e.  ( { Q }  .+  { R } )  <->  ( S  e.  A  /\  S  .<_  ( Q 
 .\/  R ) ) ) )
 
Theoremelpadd2at2 29275 Membership in a projective subspace sum of two points. (Contributed by NM, 8-Mar-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  Lat  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A )
 )  ->  ( S  e.  ( { Q }  .+  { R } )  <->  S 
 .<_  ( Q  .\/  R ) ) )
 
TheorempaddunssN 29276 Projective subspace sum includes the set union of its arguments. (Contributed by NM, 12-Jan-2012.) (New usage is discouraged.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  u.  Y )  C_  ( X  .+  Y ) )
 
Theoremelpadd0 29277 Member of projective subspace sum with at least one empty set.. (Contributed by NM, 29-Dec-2011.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  -.  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( S  e.  ( X  .+  Y )  <->  ( S  e.  X  \/  S  e.  Y ) ) )
 
Theorempaddval0 29278 Projective subspace sum with at least one empty set. (Contributed by NM, 11-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  /\  -.  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  ->  ( X  .+  Y )  =  ( X  u.  Y ) )
 
Theorempadd01 29279 Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A )  ->  ( X  .+  (/) )  =  X )
 
Theorempadd02 29280 Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A )  ->  ( (/)  .+  X )  =  X )
 
Theorempaddcom 29281 Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  Lat  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theorempaddssat 29282 A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  ( X  .+  Y )  C_  A )
 
Theoremsspadd1 29283 A projective subspace sum is a superset of its first summand. (ssun1 3339 analog.) (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  X  C_  ( X  .+  Y ) )
 
Theoremsspadd2 29284 A projective subspace sum is a superset of its second summand. (ssun2 3340 analog.) (Contributed by NM, 3-Jan-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  X  C_  A  /\  Y  C_  A )  ->  X  C_  ( Y  .+  X ) )
 
Theorempaddss1 29285 Subset law for projective subspace sum. (unss1 3345 analog.) (Contributed by NM, 7-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  ->  ( X  C_  Y  ->  ( X  .+  Z )  C_  ( Y  .+  Z ) ) )
 
Theorempaddss2 29286 Subset law for projective subspace sum. (unss2 3347 analog.) (Contributed by NM, 7-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  Y  C_  A  /\  Z  C_  A )  ->  ( X  C_  Y  ->  ( Z  .+  X )  C_  ( Z  .+  Y ) ) )
 
Theorempaddss12 29287 Subset law for projective subspace sum. (unss12 3348 analog.) (Contributed by NM, 7-Mar-2012.)
 |-  A  =  ( Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( K  e.  B  /\  Y  C_  A  /\  W  C_  A )  ->  ( ( X  C_  Y  /\  Z  C_  W )  ->  ( X  .+  Z )  C_  ( Y 
 .+  W ) ) )
 
Theorempaddasslem1 29288 Lemma for paddass 29306. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( x  e.  A  /\  r  e.  A  /\  y  e.  A )  /\  x  =/=  y
 )  /\  -.  r  .<_  ( x  .\/  y
 ) )  ->  -.  x  .<_  ( r  .\/  y
 ) )
 
Theorempaddasslem2 29289 Lemma for paddass 29306. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( -.  r  .<_  ( x  .\/  y
 )  /\  r  .<_  ( y  .\/  z )
 ) )  ->  z  .<_  ( r  .\/  y
 ) )
 
Theorempaddasslem3 29290* Lemma for paddass 29306. Restate projective space axiom ps-2 28946. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( K  e.  HL  /\  ( x  e.  A  /\  r  e.  A  /\  y  e.  A )  /\  ( p  e.  A  /\  z  e.  A ) )  ->  ( ( ( -.  x  .<_  ( r  .\/  y )  /\  p  =/=  z
 )  /\  ( p  .<_  ( x  .\/  r
 )  /\  z  .<_  ( r  .\/  y )
 ) )  ->  E. s  e.  A  ( s  .<_  ( x  .\/  y )  /\  s  .<_  ( p 
 .\/  z ) ) ) )
 
Theorempaddasslem4 29291* Lemma for paddass 29306. Combine paddasslem1 29288, paddasslem2 29289, and paddasslem3 29290. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  p  e.  A  /\  r  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  /\  ( p  =/=  z  /\  x  =/=  y  /\  -.  r  .<_  ( x  .\/  y
 ) ) )  /\  ( p  .<_  ( x 
 .\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) 
 ->  E. s  e.  A  ( s  .<_  ( x 
 .\/  y )  /\  s  .<_  ( p  .\/  z ) ) )
 
Theorempaddasslem5 29292 Lemma for paddass 29306. Show  s  =/=  z by contradiction. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  r  e.  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( -.  r  .<_  ( x  .\/  y )  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
 .\/  y ) ) )  ->  s  =/=  z )
 
Theorempaddasslem6 29293 Lemma for paddass 29306. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  s  e.  A )  /\  z  e.  A )  /\  ( s  =/=  z  /\  s  .<_  ( p  .\/  z )
 ) )  ->  p  .<_  ( s  .\/  z
 ) )
 
Theorempaddasslem7 29294 Lemma for paddass 29306. Combine paddasslem5 29292 and paddasslem6 29293. (Contributed by NM, 9-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( p  e.  A  /\  r  e.  A  /\  s  e.  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  /\  ( ( -.  r  .<_  ( x  .\/  y
 )  /\  r  .<_  ( y  .\/  z )  /\  s  .<_  ( x 
 .\/  y ) ) 
 /\  s  .<_  ( p 
 .\/  z ) ) )  ->  p  .<_  ( s  .\/  z )
 )
 
Theorempaddasslem8 29295 Lemma for paddass 29306. (Contributed by NM, 8-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  s  e.  A ) )  /\  ( ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  s  .<_  ( x  .\/  y
 )  /\  p  .<_  ( s  .\/  z )
 ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem9 29296 Lemma for paddass 29306. Combine paddasslem7 29294 and paddasslem8 29295. (Contributed by NM, 9-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( K  e.  HL  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A ) )  /\  ( ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x 
 .\/  y )  /\  r  .<_  ( y  .\/  z ) )  /\  ( s  e.  A  /\  s  .<_  ( x 
 .\/  y )  /\  s  .<_  ( p  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem10 29297 Lemma for paddass 29306. Use paddasslem4 29291 to eliminate  s from paddasslem9 29296. (Contributed by NM, 9-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  p  =/=  z  /\  x  =/=  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A ) )  /\  ( ( x  e.  X  /\  y  e.  Y  /\  z  e.  Z )  /\  ( -.  r  .<_  ( x 
 .\/  y )  /\  p  .<_  ( x  .\/  r )  /\  r  .<_  ( y  .\/  z )
 ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem11 29298 Lemma for paddass 29306. The case when  p  =  z. (Contributed by NM, 11-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  p  =  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A ) ) 
 /\  z  e.  Z )  ->  p  e.  (
 ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem12 29299 Lemma for paddass 29306. The case when  x  =  y. (Contributed by NM, 11-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  x  =  y )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A ) )  /\  ( ( y  e.  Y  /\  z  e.  Z )  /\  ( p  .<_  ( x 
 .\/  r )  /\  r  .<_  ( y  .\/  z ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
 
Theorempaddasslem13 29300 Lemma for paddass 29306. The case when  r 
.<_  ( x  .\/  y
). (Unlike the proof in Maeda and Maeda, we don't need  x  =/=  y.) (Contributed by NM, 11-Jan-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  .+  =  ( + P `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  p  =/=  z )  /\  ( X  C_  A  /\  Y  C_  A  /\  Z  C_  A )  /\  ( p  e.  A  /\  r  e.  A )
 )  /\  ( ( x  e.  X  /\  y  e.  Y )  /\  ( r  .<_  ( x 
 .\/  y )  /\  p  .<_  ( x  .\/  r ) ) ) )  ->  p  e.  ( ( X  .+  Y )  .+  Z ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31433
  Copyright terms: Public domain < Previous  Next >