HomeHome Metamath Proof Explorer
Theorem List (p. 296 of 309)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21328)
  Hilbert Space Explorer  Hilbert Space Explorer
(21329-22851)
  Users' Mathboxes  Users' Mathboxes
(22852-30843)
 

Theorem List for Metamath Proof Explorer - 29501-29600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcdlemg6 29501 TODO: FIX COMMENT (Contributed by NM, 27-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  ( G `  P ) )  =  P ) ) 
 ->  ( F `  ( G `  Q ) )  =  Q )
 
Theoremcdlemg7fvN 29502 Value of a translation composition in terms of an associated atom. (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( P  .\/  ( X  ./\  W ) )  =  X ) ) 
 ->  ( F `  ( G `  X ) )  =  ( ( F `
  ( G `  P ) )  .\/  ( X  ./\  W ) ) )
 
Theoremcdlemg7aN 29503 TODO: FIX COMMENT (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  ( G `  P ) )  =  P ) ) 
 ->  ( F `  ( G `  X ) )  =  X )
 
Theoremcdlemg7N 29504 TODO: FIX COMMENT (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
  ( G `  P ) )  =  P ) )  ->  ( F `  ( G `
  X ) )  =  X )
 
Theoremcdlemg8a 29505 TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  ( G `  P ) )  =  P ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg8b 29506 TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `  ( G `  P ) )  =/=  P ) )  ->  ( P  .\/  ( F `  ( G `  P ) ) )  =  ( P 
 .\/  Q ) )
 
Theoremcdlemg8c 29507 TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `  ( G `  P ) )  =/=  P ) )  ->  ( Q  .\/  ( F `  ( G `  Q ) ) )  =  ( P 
 .\/  Q ) )
 
Theoremcdlemg8d 29508 TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `  ( G `  P ) )  =/=  P ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg8 29509 TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg9a 29510 TODO: FIX COMMENT (Contributed by NM, 1-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  U )  ./\  ( ( F `  ( G `  P ) )  .\/  U ) )  .<_  ( ( G `  P ) 
 .\/  U ) )
 
Theoremcdlemg9b 29511 The triples  <. P ,  ( F `  ( G `
 P ) ) ,  ( F `  P ) >. and  <. Q , 
( F `  ( G `  Q )
) ,  ( F `
 Q ) >. are centrally perspective. TODO: FIX COMMENT (Contributed by NM, 1-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
  Q ) ) ) )  .<_  ( ( G `  P ) 
 .\/  ( G `  Q ) ) )
 
Theoremcdlemg9 29512 The triples  <. P ,  ( F `  ( G `
 P ) ) ,  ( F `  P ) >. and  <. Q , 
( F `  ( G `  Q )
) ,  ( F `
 Q ) >. are axially perspective by dalaw 28764. Part of Lemma G of [Crawley] p. 116, last 2 lines. TODO: FIX COMMENT (Contributed by NM, 1-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  .<_  ( ( ( ( F `  ( G `  P ) )  .\/  ( G `  P ) )  ./\  ( ( F `  ( G `  Q ) )  .\/  ( G `  Q ) ) ) 
 .\/  ( ( ( G `  P ) 
 .\/  P )  ./\  (
 ( G `  Q )  .\/  Q ) ) ) )
 
Theoremcdlemg10b 29513 TODO: FIX COMMENT TODO: Can this be moved up as a stand-alone theorem in ltrn* area? (Contributed by NM, 4-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  F  e.  T )  ->  ( ( ( F `  P ) 
 .\/  ( F `  Q ) )  ./\  W )  =  ( ( P  .\/  Q )  ./\ 
 W ) )
 
Theoremcdlemg10bALTN 29514 TODO: FIX COMMENT TODO: Can this be moved up as a stand-alone theorem in ltrn* area? TODO: Compare this proof to cdlemg2m 29482 and pick best, if moved to ltrn* area. (Contributed by NM, 4-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  (
 ( ( F `  P )  .\/  ( F `
  Q ) ) 
 ./\  W )  =  ( ( P  .\/  Q )  ./\  W ) )
 
Theoremcdlemg11a 29515 TODO: FIX COMMENT (Contributed by NM, 4-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( F `  ( G `
  P ) )  =/=  P )
 
Theoremcdlemg11aq 29516 TODO: FIX COMMENT TODO: can proof using this be restructured to use cdlemg11a 29515? (Contributed by NM, 4-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( F `  ( G `
  Q ) )  =/=  Q )
 
Theoremcdlemg10c 29517 TODO: FIX COMMENT TODO: Can this be moved up as a stand-alone theorem in trl* area? (Contributed by NM, 4-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T ) )  ->  ( ( R `  F ) 
 .<_  ( ( G `  P )  .\/  ( G `
  Q ) )  <-> 
 ( R `  F )  .<_  ( P  .\/  Q ) ) )
 
Theoremcdlemg10a 29518 TODO: FIX COMMENT (Contributed by NM, 3-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 ) )  ->  (
 ( P  .\/  ( F `  ( G `  P ) ) ) 
 ./\  ( Q  .\/  ( F `  ( G `
  Q ) ) ) )  .<_  ( ( R `  F ) 
 .\/  ( R `  G ) ) )
 
Theoremcdlemg10 29519 TODO: FIX COMMENT (Contributed by NM, 4-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 ) )  ->  (
 ( P  .\/  ( F `  ( G `  P ) ) ) 
 ./\  ( Q  .\/  ( F `  ( G `
  Q ) ) ) )  .<_  W )
 
Theoremcdlemg11b 29520 TODO: FIX COMMENT (Contributed by NM, 5-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  ( G  e.  T  /\  P  =/=  Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 ) )  ->  ( P  .\/  Q )  =/=  ( ( G `  P )  .\/  ( G `
  Q ) ) )
 
Theoremcdlemg12a 29521 TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  ( P  .\/  U )  =/=  ( ( G `
  P )  .\/  U ) ) )  ->  ( ( P  .\/  U )  ./\  ( ( G `  P )  .\/  U ) )  .<_  ( ( F `  ( G `
  P ) ) 
 .\/  U ) )
 
Theoremcdlemg12b 29522 The triples  <. P ,  ( F `  P ) ,  ( F `  ( G `  P ) ) >. and  <. Q , 
( F `  Q
) ,  ( F `
 ( G `  Q ) ) >. are centrally perspective. TODO: FIX COMMENT (Contributed by NM, 5-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( G `  P )  .\/  ( G `  Q ) ) )  .<_  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) ) )
 
Theoremcdlemg12c 29523 The triples  <. P ,  ( F `  P ) ,  ( F `  ( G `  P ) ) >. and  <. Q , 
( F `  Q
) ,  ( F `
 ( G `  Q ) ) >. are axially perspective by dalaw 28764. TODO: FIX COMMENT (Contributed by NM, 5-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( G `  P ) )  ./\  ( Q  .\/  ( G `  Q ) ) )  .<_  ( ( ( ( G `
  P )  .\/  ( F `  ( G `
  P ) ) )  ./\  ( ( G `  Q )  .\/  ( F `  ( G `
  Q ) ) ) )  .\/  (
 ( ( F `  ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q )
 ) ) )
 
Theoremcdlemg12d 29524 TODO: FIX COMMENT (Contributed by NM, 5-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q 
 /\  -.  ( R `  F )  .<_  ( P 
 .\/  Q )  /\  -.  ( R `  G ) 
 .<_  ( P  .\/  Q ) ) )  ->  ( R `  G ) 
 .<_  ( ( R `  F )  .\/  ( ( ( F `  ( G `  P ) ) 
 .\/  P )  ./\  (
 ( F `  ( G `  Q ) ) 
 .\/  Q ) ) ) )
 
Theoremcdlemg12e 29525 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .0.  =  ( 0. `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q )  /\  ( -.  ( R `  F )  .<_  ( P 
 .\/  Q )  /\  -.  ( R `  G ) 
 .<_  ( P  .\/  Q )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( (
 ( F `  ( G `  P ) ) 
 .\/  P )  ./\  (
 ( F `  ( G `  Q ) ) 
 .\/  Q ) )  =/= 
 .0.  )
 
Theoremcdlemg12f 29526 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 )  /\  ( R `  F )  =/=  ( R `  G )  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  .<_  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W ) )
 
Theoremcdlemg12g 29527 TODO: FIX COMMENT TODO: Combine with cdlemg12f 29526. (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 )  /\  ( R `  F )  =/=  ( R `  G )  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  =  ( ( P  .\/  ( F `  ( G `  P ) ) ) 
 ./\  W ) )
 
Theoremcdlemg12 29528 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 )  /\  ( R `  F )  =/=  ( R `  G )  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg13a 29529 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( F `
  P )  =/= 
 P  /\  ( R `  F )  =  ( R `  G ) 
 /\  ( ( F `
  ( G `  P ) )  .\/  ( F `  ( G `
  Q ) ) )  =/=  ( P 
 .\/  Q ) ) ) 
 ->  ( P  .\/  ( F `  ( G `  P ) ) )  =  ( ( G `
  P )  .\/  ( F `  ( G `
  P ) ) ) )
 
Theoremcdlemg13 29530 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( F `
  P )  =/= 
 P  /\  ( R `  F )  =  ( R `  G ) 
 /\  ( ( F `
  ( G `  P ) )  .\/  ( F `  ( G `
  Q ) ) )  =/=  ( P 
 .\/  Q ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg14f 29531 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P )
 )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg14g 29532 TODO: FIX COMMENT (Contributed by NM, 22-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P )
 )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg15a 29533 Eliminate the  ( F `  P )  =/=  P condition from cdlemg13 29530. TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( R `
  F )  =  ( R `  G )  /\  ( ( F `
  ( G `  P ) )  .\/  ( F `  ( G `
  Q ) ) )  =/=  ( P 
 .\/  Q ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg15 29534 Eliminate the  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) condition from cdlemg13 29530. TODO: FIX COMMENT (Contributed by NM, 25-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =  ( R `  G ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg16 29535 Part of proof of Lemma G of [Crawley] p. 116; 2nd line p. 117, which says that (our) cdlemg10 29519 "implies (2)" (of p. 116). No details are provided by the authors, so there may be a shorter proof; but ours requires the 14 lemmas, one using Desargues' law dalaw 28764, in order to make this inference. This final step eliminates the  ( R `  F )  =/=  ( R `  G ) condition from cdlemg12 29528. TODO: FIX COMMENT TODO: should we also eliminate  P  =/=  Q here (or earlier)? Do it if we don't need to add it in for something else later. (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  (
 ( F `  ( G `  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg16ALTN 29536 This version of cdlemg16 29535 uses cdlemg15a 29533 instead of cdlemg15 29534, in case cdlemg15 29534 ends up not being needed. TODO: FIX COMMENT (Contributed by NM, 6-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  P  =/=  Q )  /\  ( ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 ) )  ->  (
 ( P  .\/  ( F `  ( G `  P ) ) ) 
 ./\  W )  =  ( ( Q  .\/  ( F `  ( G `  Q ) ) ) 
 ./\  W ) )
 
Theoremcdlemg16z 29537 Eliminate  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) condition from cdlemg16 29535. TODO: would it help to also eliminate  P  =/=  Q here or later? (Contributed by NM, 25-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg16zz 29538 Eliminate  P  =/=  Q from cdlemg16z 29537. TODO: Use this only if needed. (Contributed by NM, 26-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  ( R `  F )  .<_  ( P 
 .\/  Q )  /\  -.  ( R `  G ) 
 .<_  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg17a 29539 TODO: FIX COMMENT (Contributed by NM, 8-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( G  e.  T  /\  ( R `  G )  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( G `  P )  .<_  ( P  .\/  Q ) )
 
Theoremcdlemg17b 29540* Part of proof of Lemma G in [Crawley] p. 117, 4th line. Whenever (in their terminology) p  \/ q/0 (i.e. the sublattice from 0 to p  \/ q) contains precisely three atoms and g is not the identity, g(p) = q. See also comments under cdleme0nex 29168. (Contributed by NM, 8-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( G  e.  T  /\  P  =/=  Q )  /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  P )  =  Q )
 
Theoremcdlemg17dN 29541* TODO: fix comment. (Contributed by NM, 9-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  ( ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  /\  ( G `  P )  =/=  P ) ) 
 ->  ( R `  G )  =  ( ( P  .\/  Q )  ./\  W ) )
 
Theoremcdlemg17dALTN 29542 Same as cdlemg17dN 29541 with fewer antecedents but longer proof TODO: fix comment. (Contributed by NM, 9-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( R `
  G )  .<_  ( P  .\/  Q )  /\  ( G `  P )  =/=  P ) ) 
 ->  ( R `  G )  =  ( ( P  .\/  Q )  ./\  W ) )
 
Theoremcdlemg17e 29543* TODO: fix comment. (Contributed by NM, 8-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( F `  P )  .\/  ( F `  Q ) )  =  ( ( F `  P ) 
 .\/  ( R `  G ) ) )
 
Theoremcdlemg17f 29544* TODO: fix comment. (Contributed by NM, 8-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( F `  P )  .\/  ( F `  Q ) )  =  ( ( F `  P ) 
 .\/  ( G `  ( F `  P ) ) ) )
 
Theoremcdlemg17g 29545* TODO: fix comment. (Contributed by NM, 9-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  ( F `  P ) )  .<_  ( ( F `  P ) 
 .\/  ( F `  Q ) ) )
 
Theoremcdlemg17h 29546* TODO: fix comment. (Contributed by NM, 10-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) 
 /\  ( P  =/=  Q 
 /\  S  .<_  ( ( F `  P ) 
 .\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) ) ) ) 
 ->  ( S  =  ( F `  P )  \/  S  =  ( F `  Q ) ) )
 
Theoremcdlemg17i 29547* TODO: fix comment. (Contributed by NM, 10-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  ( F `  P ) )  =  ( F `  Q ) )
 
Theoremcdlemg17ir 29548* TODO: fix comment. (Contributed by NM, 13-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( F `  ( G `  P ) )  =  ( F `  Q ) )
 
Theoremcdlemg17j 29549* TODO: fix comment. (Contributed by NM, 11-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  ( F `  P ) )  =  ( F `  ( G `  P ) ) )
 
Theoremcdlemg17pq 29550* Utility theorem for swapping  P and  Q. TODO: fix comment. (Contributed by NM, 11-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( (
 ( K  e.  HL  /\  W  e.  H ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  Q  =/=  P ) 
 /\  ( ( G `
  Q )  =/= 
 Q  /\  ( R `  G )  .<_  ( Q 
 .\/  P )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( Q  .\/  r )  =  ( P  .\/  r ) ) ) ) )
 
Theoremcdlemg17bq 29551* cdlemg17b 29540 with  P and  Q swapped. Antecedent  F  e.  ( T `  W ) is redundant for easier use. TODO: should we have redundant antecedent for cdlemg17b 29540 also? (Contributed by NM, 13-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  Q )  =  P )
 
Theoremcdlemg17iqN 29552* cdlemg17i 29547 with  P and  Q swapped. (Contributed by NM, 13-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  P  =/=  Q )  /\  ( ( R `
  G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) )  /\  ( G `  P )  =/= 
 P ) )  ->  ( G `  ( F `
  Q ) )  =  ( F `  P ) )
 
Theoremcdlemg17irq 29553* cdlemg17ir 29548 with  P and  Q swapped. (Contributed by NM, 13-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( F `  ( G `  Q ) )  =  ( F `  P ) )
 
Theoremcdlemg17jq 29554* cdlemg17j 29549 with  P and  Q swapped. (Contributed by NM, 13-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  ( F `  Q ) )  =  ( F `  ( G `  Q ) ) )
 
Theoremcdlemg17 29555* Part of Lemma G of [Crawley] p. 117, lines 7 and 8. We show an argument whose value at  G equals itself. TODO: fix comment. (Contributed by NM, 12-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) ) )  =  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) ) )
 
Theoremcdlemg18a 29556 Show two lines are different. TODO: fix comment. (Contributed by NM, 14-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `
  P ) )  =/=  ( P  .\/  Q ) ) )  ->  ( P  .\/  ( F `
  Q ) )  =/=  ( Q  .\/  ( F `  P ) ) )
 
Theoremcdlemg18b 29557 Lemma for cdlemg18c 29558. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  F  e.  T )  /\  ( P  =/=  Q 
 /\  ( F `  P )  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `
  P ) )  =/=  ( P  .\/  Q ) ) )  ->  -.  P  .<_  ( U  .\/  ( F `  Q ) ) )
 
Theoremcdlemg18c 29558 Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  F  e.  T )  /\  ( P  =/=  Q 
 /\  ( F `  P )  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `
  P ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  Q ) )  ./\  ( Q  .\/  ( F `  P ) ) )  e.  A )
 
Theoremcdlemg18d 29559* Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
  P )  =/= 
 P )  /\  (
 ( R `  G )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  e.  A )
 
Theoremcdlemg18 29560* Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
  P )  =/= 
 P )  /\  (
 ( R `  G )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  .<_  W )
 
Theoremcdlemg19a 29561* Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
  P )  =/= 
 P )  /\  (
 ( R `  G )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  =  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )
 )
 
Theoremcdlemg19 29562* Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
  P )  =/= 
 P )  /\  (
 ( R `  G )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg20 29563* Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 23-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( R `
  G )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg21 29564* Version of cdlemg19 with  ( R `  F
)  .<_  ( P  .\/  Q ) instead of  ( R `  G )  .<_  ( P 
.\/  Q ) as a condition. (Contributed by NM, 23-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
  P )  =/= 
 P )  /\  (
 ( R `  F )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg22 29565* cdlemg21 29564 with  ( F `  P )  =/=  P condition removed. (Contributed by NM, 23-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( R `
  F )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg24 29566* Combine cdlemg16z 29537 and cdlemg22 29565. TODO: Fix comment. (Contributed by NM, 24-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg37 29567* Use cdlemg8 29509 to eliminate the  =/=  ( P  .\/  Q
) condition of cdlemg24 29566. (Contributed by NM, 31-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg25zz 29568 cdlemg16zz 29538 restated for easier studying. TODO: Discard this after everything is figured out. (Contributed by NM, 26-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  ( R `  F )  .<_  ( P 
 .\/  z )  /\  -.  ( R `  G )  .<_  ( P  .\/  z ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( z  .\/  ( F `  ( G `
  z ) ) )  ./\  W )
 )
 
Theoremcdlemg26zz 29569 cdlemg16zz 29538 restated for easier studying. TODO: Discard this after everything is figured out. (Contributed by NM, 26-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  ( R `  F )  .<_  ( Q 
 .\/  z )  /\  -.  ( R `  G )  .<_  ( Q  .\/  z ) ) ) 
 ->  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )  =  ( ( z  .\/  ( F `  ( G `
  z ) ) )  ./\  W )
 )
 
Theoremcdlemg27a 29570 For use with case when  ( P  .\/  v
)  ./\  ( Q  .\/  ( R `  F
) ) or  ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) is zero, letting us establish  -.  z  .<_  W  /\  z  .<_  ( P 
.\/  v ) via 4atex 28954. TODO: Fix comment. (Contributed by NM, 28-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( z  e.  A  /\  F  e.  T ) 
 /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
 .\/  v )  /\  ( F `  P )  =/=  P ) ) 
 ->  -.  ( R `  F )  .<_  ( P 
 .\/  z ) )
 
Theoremcdlemg28a 29571 Part of proof of Lemma G of [Crawley] p. 116. First equality of the equation of line 14 on p. 117. (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( v  =/=  ( R `
  F )  /\  v  =/=  ( R `  G ) )  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/= 
 P ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( z  .\/  ( F `  ( G `
  z ) ) )  ./\  W )
 )
 
Theoremcdlemg31b0N 29572 TODO: Fix comment. (Contributed by NM, 30-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  F  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  v  =/=  ( R `  F )  /\  ( F `
  P )  =/= 
 P ) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K ) ) )
 
Theoremcdlemg31b0a 29573 TODO: Fix comment. (Contributed by NM, 30-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F ) ) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K ) ) )
 
Theoremcdlemg27b 29574 TODO: Fix comment. (Contributed by NM, 28-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 z  e.  A  /\  ( v  e.  A  /\  v  .<_  W ) 
 /\  ( F  e.  T  /\  z  =/=  N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P  .\/  v )  /\  ( F `  P )  =/=  P ) ) 
 ->  -.  ( R `  F )  .<_  ( Q 
 .\/  z ) )
 
Theoremcdlemg31a 29575 TODO: fix comment. (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( v  e.  A  /\  F  e.  T ) )  ->  N  .<_  ( P  .\/  v )
 )
 
Theoremcdlemg31b 29576 TODO: fix comment. (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( v  e.  A  /\  F  e.  T ) )  ->  N  .<_  ( Q  .\/  ( R `  F ) ) )
 
Theoremcdlemg31c 29577 Show that when  N is an atom, it is not under  W. TODO: Is there a shorter direct proof? Todo: should we eliminate  ( F `  P )  =/=  P here? (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( v  e.  A  /\  v  .<_  W ) 
 /\  F  e.  T )  /\  ( v  =/=  ( R `  F )  /\  ( F `  P )  =/=  P  /\  N  e.  A )
 )  ->  -.  N  .<_  W )
 
Theoremcdlemg31d 29578 Eliminate  ( F `  P )  =/=  P from cdlemg31c 29577. TODO: Prove directly. Todo: do we need to eliminate  ( F `  P )  =/=  P? It might be better to do this all at once at the end. See also cdlemg29 29583 vs. cdlemg28 29582. (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )  /\  N  e.  A )
 )  ->  -.  N  .<_  W )
 
Theoremcdlemg33b0 29579* TODO: Fix comment. (Contributed by NM, 30-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( v  e.  A  /\  v  .<_  W ) 
 /\  N  e.  A  /\  F  e.  T ) 
 /\  ( P  =/=  Q 
 /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/=  N  /\  z  .<_  ( P  .\/  v
 ) ) ) )
 
Theoremcdlemg33c0 29580* TODO: Fix comment. (Contributed by NM, 30-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( v  e.  A  /\  v  .<_  W ) 
 /\  F  e.  T )  /\  ( P  =/=  Q 
 /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  z  .<_  ( P  .\/  v )
 ) )
 
Theoremcdlemg28b 29581* Part of proof of Lemma G of [Crawley] p. 116. Second equality of the equation of line 14 on p. 117. Note that  -.  z  .<_  W is redundant here (but simplifies cdlemg28 29582.) (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   &    |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `
  G ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( v  e.  A  /\  v  .<_  W ) 
 /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )
 )  /\  ( (
 z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v
 ) )  /\  (
 v  =/=  ( R `  F )  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/= 
 P ) ) ) 
 ->  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )  =  ( ( z  .\/  ( F `  ( G `
  z ) ) )  ./\  W )
 )
 
Theoremcdlemg28 29582* Part of proof of Lemma G of [Crawley] p. 116. Chain the equalities of line 14 on p. 117. TODO: rearrange hypotheses in the order of cdlemg29 29583 (and maybe leading up to this too)? (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   &    |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `
  G ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( v  e.  A  /\  v  .<_  W ) 
 /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )
 )  /\  ( (
 z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v
 ) )  /\  (
 v  =/=  ( R `  F )  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/= 
 P ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg29 29583* Eliminate  ( F `  P )  =/=  P and  ( G `  P )  =/=  P from cdlemg28 29582. TODO: would it be better to do this later? (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   &    |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `
  G ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( v  e.  A  /\  v  .<_  W ) 
 /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )
 )  /\  ( (
 z  =/=  N  /\  z  =/=  O )  /\  z  .<_  ( P  .\/  v )  /\  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G ) ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg33a 29584* TODO: Fix comment. (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   &    |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `
  G ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( v  e.  A  /\  v  .<_  W ) 
 /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  =/=  Q  /\  N  =/=  O )  /\  v  =/=  ( R `  F )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) ) ) ) 
 ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v
 ) ) ) )
 
Theoremcdlemg33b 29585* TODO: Fix comment. (Contributed by NM, 30-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   &    |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `
  G ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( v  e.  A  /\  v  .<_  W ) 
 /\  ( N  e.  A  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T