HomeHome Metamath Proof Explorer
Theorem List (p. 297 of 315)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21459)
  Hilbert Space Explorer  Hilbert Space Explorer
(21460-22982)
  Users' Mathboxes  Users' Mathboxes
(22983-31404)
 

Theorem List for Metamath Proof Explorer - 29601-29700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtrlval 29601* The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( R `  F )  =  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  ( F `  p ) )  ./\  W )
 ) ) )
 
Theoremtrlval2 29602 The value of the trace of a lattice translation, given any atom  P not under the fiducial co-atom  W. Note: this requires only the weaker assumption  K  e.  Lat; we use  K  e.  HL for convenience. (Contributed by NM, 20-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P ) ) 
 ./\  W ) )
 
Theoremtrlcl 29603 Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( R `  F )  e.  B )
 
Theoremtrlcnv 29604 The trace of the converse of a lattice translation. (Contributed by NM, 10-May-2013.)
 |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( R `  `' F )  =  ( R `  F ) )
 
Theoremtrljat1 29605 The value of a translation of an atom  P not under the fiducial co-atom  W, joined with trace. Equation above Lemma C in [Crawley] p. 112. Todo: shorten with atmod3i1 29303? (Contributed by NM, 22-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  F ) )  =  ( P  .\/  ( F `  P ) ) )
 
Theoremtrljat2 29606 The value of a translation of an atom  P not under the fiducial co-atom  W, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  F ) )  =  ( P 
 .\/  ( F `  P ) ) )
 
Theoremtrljat3 29607 The value of a translation of an atom  P not under the fiducial co-atom  W, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 22-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  F ) )  =  (
 ( F `  P )  .\/  ( R `  F ) ) )
 
Theoremtrlat 29608 If an atom differs from its translation, the trace is an atom. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A )
 
Theoremtrl0 29609 If an atom not under the fiducial co-atom  W equals its lattice translation, the trace of the translation is zero. (Contributed by NM, 24-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .0.  =  ( 0. `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( R `
  F )  =  .0.  )
 
Theoremtrlator0 29610 The trace of a lattice translation is an atom or zero. (Contributed by NM, 5-May-2013.)
 |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( ( R `  F )  e.  A  \/  ( R `  F )  =  .0.  )
 )
 
Theoremtrlatn0 29611 The trace of a lattice translation is an atom iff it is nonzero. (Contributed by NM, 14-Jun-2013.)
 |-  .0.  =  ( 0. `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( ( R `  F )  e.  A  <->  ( R `  F )  =/=  .0.  ) )
 
Theoremtrlnidat 29612 The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  A )
 
Theoremltrnnidn 29613 If a lattice translation is not the identity, then the translation of any atom not under the fiducial co-atom  W is different from the atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 24-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  =/=  P )
 
Theoremltrnideq 29614 Property of the identity lattice translation. (Contributed by NM, 27-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F  =  (  _I  |`  B )  <-> 
 ( F `  P )  =  P )
 )
 
Theoremtrlid0 29615 The trace of the identity translation is zero. (Contributed by NM, 11-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( R `  (  _I  |`  B ) )  =  .0.  )
 
Theoremtrlnidatb 29616 A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat 29612? Why do both this and ltrnideq 29614 need trlnidat 29612? (Contributed by NM, 4-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( F  =/=  (  _I  |`  B )  <->  ( R `  F )  e.  A ) )
 
Theoremtrlid0b 29617 A lattice translation is the identity iff its trace is zero. (Contributed by NM, 14-Jun-2013.)
 |-  B  =  ( Base `  K )   &    |-  .0.  =  ( 0. `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( F  =  (  _I  |`  B )  <->  ( R `  F )  =  .0.  ) )
 
Theoremtrlnid 29618 Different translations with the same trace cannot be the identity. (Contributed by NM, 26-Jul-2013.)
 |-  B  =  ( Base `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) 
 /\  ( F  =/=  G 
 /\  ( R `  F )  =  ( R `  G ) ) )  ->  F  =/=  (  _I  |`  B )
 )
 
Theoremltrn2ateq 29619 Property of the equality of a lattice translation with its value. (Contributed by NM, 27-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( ( F `  P )  =  P  <->  ( F `  Q )  =  Q ) )
 
Theoremltrnateq 29620 If any atom (under  W) is not equal to its translation, so is any other atom. (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( F `  Q )  =  Q )
 
Theoremltrnatneq 29621 If any atom (under  W) is not equal to its translation, so is any other atom. TODO:  -.  P  .<_  W isn't needed to prove this. Will removing it shorten (and not lengthen) proofs using it? (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F `  P )  =/= 
 P )  ->  ( F `  Q )  =/= 
 Q )
 
Theoremltrnatlw 29622 If the value of an atom equals the atom in a non-identity translation, the atom is under the fiducial hyperplane. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  Q  e.  A )  /\  ( ( F `
  P )  =/= 
 P  /\  ( F `  Q )  =  Q ) )  ->  Q  .<_  W )
 
Theoremtrlle 29623 The trace of a lattice translation is less than the fiducial co-atom  W.. (Contributed by NM, 25-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T ) 
 ->  ( R `  F )  .<_  W )
 
Theoremtrlne 29624 The trace of a lattice translation is not equal to any atom not under the fiducial co-atom  W. Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  =/=  ( R `  F ) )
 
Theoremtrlnle 29625 The atom not under the fiducial co-atom  W is not less than the trace of a lattice translation. Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  ( R `  F ) )
 
Theoremtrlval3 29626 The value of the trace of a lattice translation in terms of 2 atoms. TODO: Try to shorten proof. (Contributed by NM, 3-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `
  P ) )  =/=  ( Q  .\/  ( F `  Q ) ) ) )  ->  ( R `  F )  =  ( ( P 
 .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
  Q ) ) ) )
 
Theoremtrlval4 29627 The value of the trace of a lattice translation in terms of 2 atoms. (Contributed by NM, 3-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  ( R `  F ) 
 .<_  ( P  .\/  Q ) ) )  ->  ( R `  F )  =  ( ( P 
 .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
  Q ) ) ) )
 
Theoremtrlval5 29628 The value of the trace of a lattice translation in terms of itself. (Contributed by NM, 19-Jul-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( R `  F ) ) 
 ./\  W ) )
 
Theoremarglem1N 29629 Lemma for Desargues' law. Theorem 13.3 of [Crawley] p. 110, 3rd and 4th lines from bottom. In these lemmas,  P,  Q,  R,  S,  T,  U,  C,  D,  E,  F, and  G represent Crawley's a0, a1, a2, b0, b1, b2, c, z0, z1, z2, and p respectively. (Contributed by NM, 28-Jun-2012.) (New usage is discouraged.)
 |-  .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  F  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )   &    |-  G  =  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )   =>    |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T ) )  /\  G  e.  A )  ->  F  e.  A )
 
Theoremcdlemc1 29630 Part of proof of Lemma C in [Crawley] p. 112. TODO: shorten with atmod3i1 29303? (Contributed by NM, 29-May-2012.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( ( P  .\/  X )  ./\  W )
 )  =  ( P 
 .\/  X ) )
 
Theoremcdlemc2 29631 Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  Q )  .<_  ( ( F `  P ) 
 .\/  ( ( P 
 .\/  Q )  ./\  W ) ) )
 
Theoremcdlemc3 29632 Part of proof of Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( ( F `  P )  .<_  ( Q 
 .\/  ( R `  F ) )  ->  Q  .<_  ( P  .\/  ( F `  P ) ) ) )
 
Theoremcdlemc4 29633 Part of proof of Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  ->  ( Q  .\/  ( R `  F ) )  =/=  ( ( F `  P )  .\/  ( ( P  .\/  Q )  ./\ 
 W ) ) )
 
Theoremcdlemc5 29634 Lemma for cdlemc 29636. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( -.  Q  .<_  ( P  .\/  ( F `  P ) )  /\  ( F `
  P )  =/= 
 P ) )  ->  ( F `  Q )  =  ( ( Q 
 .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( ( P  .\/  Q )  ./\ 
 W ) ) ) )
 
Theoremcdlemc6 29635 Lemma for cdlemc 29636. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F `  P )  =  P )  ->  ( F `  Q )  =  ( ( Q  .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( ( P  .\/  Q )  ./\  W )
 ) ) )
 
Theoremcdlemc 29636 Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  ->  ( F `  Q )  =  ( ( Q  .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( ( P  .\/  Q )  ./\  W )
 ) ) )
 
Theoremcdlemd1 29637 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  R  .<_  ( P 
 .\/  Q ) ) ) )  ->  R  =  ( ( P  .\/  ( ( P  .\/  R )  ./\  W )
 )  ./\  ( Q  .\/  ( ( Q  .\/  R )  ./\  W )
 ) ) )
 
Theoremcdlemd2 29638 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( P  =/=  Q 
 /\  -.  R  .<_  ( P  .\/  Q )
 ) )  /\  (
 ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
 
Theoremcdlemd3 29639 Part of proof of Lemma D in [Crawley] p. 113. The  R  =/=  P requirement is not mentioned in their proof. (Contributed by NM, 29-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( P  =/=  Q 
 /\  R  .<_  ( P 
 .\/  Q )  /\  R  =/=  P ) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P  .\/  Q ) ) )  ->  -.  R  .<_  ( P  .\/  S ) )
 
Theoremcdlemd4 29640 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( P  =/=  Q 
 /\  R  .<_  ( P 
 .\/  Q )  /\  R  =/=  P ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) ) 
 ->  ( F `  R )  =  ( G `  R ) )
 
Theoremcdlemd5 29641 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  P  =/=  Q )  /\  ( ( F `
  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
 
Theoremcdlemd6 29642 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 31-May-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) ) 
 /\  ( F `  P )  =  ( G `  P ) ) 
 ->  ( F `  Q )  =  ( G `  Q ) )
 
Theoremcdlemd7 29643 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
 
Theoremcdlemd8 29644 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `
  P )  =  P ) )  ->  ( F `  R )  =  ( G `  R ) )
 
Theoremcdlemd9 29645 Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  A  =  (
 Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `
  P )  =  ( G `  P ) )  ->  ( F `
  R )  =  ( G `  R ) )
 
Theoremcdlemd 29646 If two translations agree at any atom not under the fiducial co-atom  W, then they are equal. Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  F  e.  T  /\  G  e.  T ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `
  P )  =  ( G `  P ) )  ->  F  =  G )
 
Theoremltrneq3 29647 Two translations agree at any atom not under the fiducial co-atom  W iff they are equal. (Contributed by NM, 25-Jul-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  (
 ( F `  P )  =  ( G `  P )  <->  F  =  G ) )
 
Theoremcdleme00a 29648 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  -.  R  .<_  ( P 
 .\/  Q ) )  ->  R  =/=  P )
 
Theoremcdleme0aa 29649 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  B  =  ( Base `  K )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A ) 
 ->  U  e.  B )
 
Theoremcdleme0a 29650 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 12-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A )
 
Theoremcdleme0b 29651 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  ->  U  =/=  P )
 
Theoremcdleme0c 29652 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 12-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  U  =/=  R )
 
Theoremcdleme0cp 29653 Part of proof of Lemma E in [Crawley] p. 113. TODO: Reformat as in cdlemg3a 30036- swap consequent equality; make antecedent use df-3an 941. (Contributed by NM, 13-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )
 )  ->  ( P  .\/  U )  =  ( P  .\/  Q )
 )
 
Theoremcdleme0cq 29654 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( Q  .\/  U )  =  ( P  .\/  Q ) )
 
Theoremcdleme0dN 29655 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  R )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  P  =/=  R ) )  ->  V  e.  A )
 
Theoremcdleme0e 29656 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  R )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  U  =/=  V )
 
Theoremcdleme0fN 29657 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  R )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A ) )  ->  V  =/=  P )
 
Theoremcdleme0gN 29658 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  V  =  ( ( P  .\/  R )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  R  e.  A )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  V  =/=  Q )
 
Theoremcdlemeulpq 29659 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Dec-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  U  .<_  ( P  .\/  Q )
 )
 
Theoremcdleme01N 29660 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  ->  ( ( U  =/=  P  /\  U  =/=  Q  /\  U  .<_  ( P  .\/  Q )
 )  /\  U  .<_  W ) )
 
Theoremcdleme02N 29661 Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  ->  ( ( P  .\/  U )  =  ( Q  .\/  U )  /\  U  .<_  W ) )
 
Theoremcdleme0ex1N 29662* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q ) 
 ->  E. u  e.  A  ( u  .<_  ( P 
 .\/  Q )  /\  u  .<_  W ) )
 
Theoremcdleme0ex2N 29663* Part of proof of Lemma E in [Crawley] p. 113. Note that  ( P  .\/  u )  =  ( Q  .\/  u ) is a shorter way to express  u  =/=  P  /\  u  =/=  Q  /\  u  .<_  ( P 
.\/  Q ). (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  ->  E. u  e.  A  ( ( P 
 .\/  u )  =  ( Q  .\/  u )  /\  u  .<_  W ) )
 
Theoremcdleme0moN 29664* Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q )  /\  E* r ( r  e.  A  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( R  =  P  \/  R  =  Q ) )
 
Theoremcdleme1b 29665 Part of proof of Lemma E in [Crawley] p. 113. Utility lemma showing  F is a lattice element.  F represents their f(r). (Contributed by NM, 6-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   &    |-  B  =  (
 Base `  K )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )
 )  ->  F  e.  B )
 
Theoremcdleme1 29666 Part of proof of Lemma E in [Crawley] p. 113.  F represents their f(r). Here we show r  \/ f(r) = r  \/ u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R  .\/  U ) )
 
Theoremcdleme2 29667 Part of proof of Lemma E in [Crawley] p. 113. .  F represents f(r).  W is the fiducial co-atom (hyperplane) w. Here we show that (r  \/ f(r))  /\ w = u in their notation (4th line from bottom on p. 113). (Contributed by NM, 5-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  (
 ( R  .\/  F )  ./\  W )  =  U )
 
Theoremcdleme3b 29668 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 29675 and cdleme3 29676. (Contributed by NM, 6-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  P  =/=  Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  R )
 
Theoremcdleme3c 29669 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 29675 and cdleme3 29676. (Contributed by NM, 6-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   &    |-  .0.  =  ( 0. `  K )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  P  =/=  Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  .0.  )
 
Theoremcdleme3d 29670 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 29675 and cdleme3 29676. (Contributed by NM, 6-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   &    |-  V  =  ( ( P  .\/  R )  ./\  W )   =>    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  V ) )
 
Theoremcdleme3e 29671 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 29675 and cdleme3 29676. (Contributed by NM, 6-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   &    |-  V  =  ( ( P  .\/  R )  ./\  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  ( P  .\/  Q )
 ) ) )  ->  V  e.  A )
 
Theoremcdleme3fN 29672 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 29675 and cdleme3 29676. TODO: Delete - duplicates cdleme0e 29656. (Contributed by NM, 6-Jun-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   &    |-  V  =  ( ( P  .\/  R )  ./\  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  U  =/=  V )
 
Theoremcdleme3g 29673 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 29675 and cdleme3 29676. (Contributed by NM, 7-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   &    |-  V  =  ( ( P  .\/  R )  ./\  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  F  =/=  U )
 
Theoremcdleme3h 29674 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 29675 and cdleme3 29676. (Contributed by NM, 6-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   &    |-  V  =  ( ( P  .\/  R )  ./\  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  F  e.  A )
 
Theoremcdleme3fa 29675 Part of proof of Lemma E in [Crawley] p. 113. See cdleme3 29676. (Contributed by NM, 6-Oct-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  -.  R  .<_  ( P  .\/  Q )
 ) )  ->  F  e.  A )
 
Theoremcdleme3 29676 Part of proof of Lemma E in [Crawley] p. 113.  F represents f(r).  W is the fiducial co-atom (hyperplane) w. Here and in cdleme3fa 29675 above, we show that f(r)  e. W (4th line from bottom on p. 113), meaning it is an atom and not under w, which in our notation is expressed as  F  e.  A  /\  -.  F  .<_  W. Their proof provides no details of our lemmas cdleme3b 29668 through cdleme3 29676, so there may be a simpler proof that we have overlooked. (Contributed by NM, 7-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
 ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) 
 /\  ( P  =/=  Q 
 /\  -.  R  .<_  ( P  .\/  Q )
 ) )  ->  -.  F  .<_  W )
 
Theoremcdleme4 29677 Part of proof of Lemma E in [Crawley] p. 113.  F and  G represent f(s) and fs(r). Here show p  \/ q = r  \/ u at the top of p. 114. (Contributed by NM, 7-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q )
 )  ->  ( P  .\/  Q )  =  ( R  .\/  U )
 )
 
Theoremcdleme4a 29678 Part of proof of Lemma E in [Crawley] p. 114 top.  G represents fs(r). Auxiliary lemma derived from cdleme5 29679. We show fs(r)  <_ p  \/ q. (Contributed by NM, 10-Nov-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  S  e.  A ) 
 ->  G  .<_  ( P  .\/  Q ) )
 
Theoremcdleme5 29679 Part of proof of Lemma E in [Crawley] p. 113.  G represents fs(r). We show r  \/ fs(r)) = p  \/ q at the top of p. 114. (Contributed by NM, 7-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( R  .\/  G )  =  ( P  .\/  Q ) )
 
Theoremcdleme6 29680 Part of proof of Lemma E in [Crawley] p. 113. This expresses (r  \/ fs(r))  /\ w = u at the top of p. 114. (Contributed by NM, 7-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( ( R  .\/  G )  ./\  W )  =  U )
 
Theoremcdleme7aa 29681 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 29687 and cdleme7 29688. (Contributed by NM, 7-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  Q  e.  A )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  -.  R  .<_  ( U  .\/  S ) )
 
Theoremcdleme7a 29682 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 29687 and cdleme7 29688. (Contributed by NM, 7-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  V ) )
 
Theoremcdleme7b 29683 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 29687 and cdleme7 29688. (Contributed by NM, 7-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) 
 /\  ( S  e.  A  /\  -.  S  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  V  e.  A )
 
Theoremcdleme7c 29684 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 29687 and cdleme7 29688. (Contributed by NM, 7-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  U  =/=  V )
 
Theoremcdleme7d 29685 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 29687 and cdleme7 29688. (Contributed by NM, 8-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  G  =/=  U )
 
Theoremcdleme7e 29686 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 29687 and cdleme7 29688. (Contributed by NM, 8-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   &    |-  V  =  ( ( R  .\/  S )  ./\  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  G  =/=  ( 0. `  K ) )
 
Theoremcdleme7ga 29687 Part of proof of Lemma E in [Crawley] p. 113. See cdleme7 29688. (Contributed by NM, 8-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( R  e.  A  /\  -.  R  .<_  W ) 
 /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  G  e.  A )
 
Theoremcdleme7 29688 Part of proof of Lemma E in [Crawley] p. 113.  G and  F represent fs(r) and f(s) respectively.  W is the fiducial co-atom (hyperplane) that they call w. Here and in cdleme7ga 29687 above, we show that fs(r)  e. W (top of p. 114), meaning it is an atom and not under w, which in our notation is expressed as  G  e.  A  /\  -.  G  .<_  W. (Note that we do not have a symbol for their W.) Their proof provides no details of our cdleme7aa 29681 through cdleme7 29688, so there may be a simpler proof that we have overlooked. (Contributed by NM, 9-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
 ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 ( R  e.  A  /\  -.  R  .<_  W ) 
 /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q )
 ) )  ->  -.  G  .<_  W )
 
Theoremcdleme8 29689 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114.  C represents s1. In their notation, we prove p  \/ s1 = p  \/ s. (Contributed by NM, 9-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  C  =  ( ( P  .\/  S )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  S  e.  A )  ->  ( P 
 .\/  C )  =  ( P  .\/  S )
 )
 
Theoremcdleme9a 29690 Part of proof of Lemma E in [Crawley] p. 113.  C represents s1, which we prove is an atom. (Contributed by NM, 10-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  C  =  ( ( P  .\/  S )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( S  e.  A  /\  P  =/=  S ) )  ->  C  e.  A )
 
Theoremcdleme9b 29691 Utility lemma for Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Oct-2012.)
 |-  B  =  ( Base `  K )   &    |-  .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  C  =  ( ( P  .\/  S )  ./\  W )   =>    |-  (
 ( K  e.  HL  /\  ( P  e.  A  /\  S  e.  A  /\  W  e.  H )
 )  ->  C  e.  B )
 
Theoremcdleme9 29692 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114.  C and  F represent s1 and f(s) respectively. In their notation, we prove f(s)  \/ s1 = q  \/ s1. (Contributed by NM, 10-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
 ) )   &    |-  C  =  ( ( P  .\/  S )  ./\  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  ( F  .\/  C )  =  ( Q  .\/  C ) )
 
Theoremcdleme10 29693 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114.  D represents s2. In their notation, we prove s  \/ s2 = s  \/ r. (Contributed by NM, 9-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  D  =  ( ( R  .\/  S )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( S  .\/  D )  =  ( S  .\/  R )
 )
 
Theoremcdleme8tN 29694 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114.  X represents t1. In their notation, we prove p  \/ t1 = p  \/ t. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  X  =  ( ( P  .\/  T )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  T  e.  A )  ->  ( P 
 .\/  X )  =  ( P  .\/  T )
 )
 
Theoremcdleme9taN 29695 Part of proof of Lemma E in [Crawley] p. 113.  X represents t1, which we prove is an atom. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  X  =  ( ( P  .\/  T )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( T  e.  A  /\  P  =/=  T ) )  ->  X  e.  A )
 
Theoremcdleme9tN 29696 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114.  X and  F represent t1 and f(t) respectively. In their notation, we prove f(t)  \/ t1 = q  \/ t1. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   &    |-  F  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
 ) )   &    |-  X  =  ( ( P  .\/  T )  ./\  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  -.  T  .<_  ( P  .\/  Q ) )  ->  ( F  .\/  X )  =  ( Q  .\/  X ) )
 
Theoremcdleme10tN 29697 Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114.  Y represents t2. In their notation, we prove t  \/ t2 = t  \/ r. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  Y  =  ( ( R  .\/  T )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  R  e.  A  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  ->  ( T  .\/  Y )  =  ( T  .\/  R )
 )
 
Theoremcdleme16aN 29698 Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, s  \/ u  =/= t  \/ u. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) 
 /\  ( Q  e.  A  /\  S  e.  A  /\  T  e.  A ) 
 /\  ( P  =/=  Q 
 /\  S  =/=  T  /\  -.  U  .<_  ( S 
 .\/  T ) ) ) 
 ->  ( S  .\/  U )  =/=  ( T  .\/  U ) )
 
Theoremcdleme11a 29699 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 29709. (Contributed by NM, 12-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  U  .<_  ( S  .\/  T ) ) ) ) 
 ->  ( S  .\/  U )  =  ( S  .\/  T ) )
 
Theoremcdleme11c 29700 Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 29709. (Contributed by NM, 13-Jun-2012.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S 
 .\/  T ) ) ) 
 ->  -.  P  .<_  ( S 
 .\/  T ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31404
  Copyright terms: Public domain < Previous  Next >