HomeHome Metamath Proof Explorer
Theorem List (p. 297 of 310)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21328)
  Hilbert Space Explorer  Hilbert Space Explorer
(21329-22851)
  Users' Mathboxes  Users' Mathboxes
(22852-30955)
 

Theorem List for Metamath Proof Explorer - 29601-29700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcdlemg4b12 29601 TODO: FIX COMMENT (Contributed by NM, 24-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  G  e.  T )  ->  ( ( G `  P )  .\/  V )  =  ( P  .\/  V ) )
 
Theoremcdlemg4c 29602 TODO: FIX COMMENT (Contributed by NM, 24-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  G  e.  T )  /\  -.  Q  .<_  ( P  .\/  V ) )  ->  -.  ( G `  Q )  .<_  ( P  .\/  V )
 )
 
Theoremcdlemg4d 29603 TODO: FIX COMMENT (Contributed by NM, 25-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V )  /\  ( F `
  ( G `  P ) )  =  P ) )  ->  -.  ( G `  Q )  .<_  ( ( G `
  P )  .\/  ( F `  ( G `
  P ) ) ) )
 
Theoremcdlemg4e 29604 TODO: FIX COMMENT (Contributed by NM, 25-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   &    |-  ./\  =  ( meet `  K )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V )  /\  ( F `
  ( G `  P ) )  =  P ) )  ->  ( F `  ( G `
  Q ) )  =  ( ( ( G `  Q ) 
 .\/  ( R `  F ) )  ./\  ( ( F `  ( G `  P ) )  .\/  ( (
 ( G `  P )  .\/  ( G `  Q ) )  ./\  W ) ) ) )
 
Theoremcdlemg4f 29605 TODO: FIX COMMENT (Contributed by NM, 25-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   &    |-  ./\  =  ( meet `  K )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V )  /\  ( F `
  ( G `  P ) )  =  P ) )  ->  ( F `  ( G `
  Q ) )  =  ( ( Q 
 .\/  V )  ./\  ( P  .\/  ( ( P 
 .\/  Q )  ./\  W ) ) ) )
 
Theoremcdlemg4g 29606 TODO: FIX COMMENT (Contributed by NM, 25-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   &    |-  ./\  =  ( meet `  K )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V )  /\  ( F `
  ( G `  P ) )  =  P ) )  ->  ( F `  ( G `
  Q ) )  =  ( ( Q 
 .\/  V )  ./\  ( P  .\/  Q ) ) )
 
Theoremcdlemg4 29607 TODO: FIX COMMENT (Contributed by NM, 25-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V )  /\  ( F `
  ( G `  P ) )  =  P ) )  ->  ( F `  ( G `
  Q ) )  =  Q )
 
Theoremcdlemg6a 29608* TODO: FIX COMMENT TODO: replace with cdlemg4 29607. (Contributed by NM, 27-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( r  e.  A  /\  -.  r  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  r  .<_  ( P  .\/  V )  /\  ( F `
  ( G `  P ) )  =  P ) )  ->  ( F `  ( G `
  r ) )  =  r )
 
Theoremcdlemg6b 29609* TODO: FIX COMMENT TODO: replace with cdlemg4 29607. (Contributed by NM, 27-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( r  e.  A  /\  -.  r  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  Q  .<_  ( r  .\/  V )  /\  ( F `
  ( G `  r ) )  =  r ) )  ->  ( F `  ( G `
  Q ) )  =  Q )
 
Theoremcdlemg6c 29610* TODO: FIX COMMENT (Contributed by NM, 27-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( (
 ( r  e.  A  /\  -.  r  .<_  W ) 
 /\  -.  r  .<_  ( P  .\/  V )
 )  ->  ( F `  ( G `  Q ) )  =  Q ) )
 
Theoremcdlemg6d 29611* TODO: FIX COMMENT (Contributed by NM, 27-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( (
 ( r  e.  A  /\  -.  r  .<_  W ) 
 /\  -.  r  .<_  ( P  .\/  ( G `  P ) ) ) 
 ->  ( F `  ( G `  Q ) )  =  Q ) )
 
Theoremcdlemg6e 29612 TODO: FIX COMMENT (Contributed by NM, 27-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .\/  =  ( join `  K )   &    |-  V  =  ( R `  G )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( F `  ( G `  Q ) )  =  Q )
 
Theoremcdlemg6 29613 TODO: FIX COMMENT (Contributed by NM, 27-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  ( G `  P ) )  =  P ) ) 
 ->  ( F `  ( G `  Q ) )  =  Q )
 
Theoremcdlemg7fvN 29614 Value of a translation composition in terms of an associated atom. (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( P  .\/  ( X  ./\  W ) )  =  X ) ) 
 ->  ( F `  ( G `  X ) )  =  ( ( F `
  ( G `  P ) )  .\/  ( X  ./\  W ) ) )
 
Theoremcdlemg7aN 29615 TODO: FIX COMMENT (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  -.  X  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  ( G `  P ) )  =  P ) ) 
 ->  ( F `  ( G `  X ) )  =  X )
 
Theoremcdlemg7N 29616 TODO: FIX COMMENT (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
 |-  B  =  ( Base `  K )   &    |-  .<_  =  ( le `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  (
 LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  X  e.  B )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `
  ( G `  P ) )  =  P ) )  ->  ( F `  ( G `
  X ) )  =  X )
 
Theoremcdlemg8a 29617 TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  ( G `  P ) )  =  P ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg8b 29618 TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `  ( G `  P ) )  =/=  P ) )  ->  ( P  .\/  ( F `  ( G `  P ) ) )  =  ( P 
 .\/  Q ) )
 
Theoremcdlemg8c 29619 TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `  ( G `  P ) )  =/=  P ) )  ->  ( Q  .\/  ( F `  ( G `  Q ) ) )  =  ( P 
 .\/  Q ) )
 
Theoremcdlemg8d 29620 TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `  ( G `  P ) )  =/=  P ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg8 29621 TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg9a 29622 TODO: FIX COMMENT (Contributed by NM, 1-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  U )  ./\  ( ( F `  ( G `  P ) )  .\/  U ) )  .<_  ( ( G `  P ) 
 .\/  U ) )
 
Theoremcdlemg9b 29623 The triples  <. P ,  ( F `  ( G `
 P ) ) ,  ( F `  P ) >. and  <. Q , 
( F `  ( G `  Q )
) ,  ( F `
 Q ) >. are centrally perspective. TODO: FIX COMMENT (Contributed by NM, 1-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
  Q ) ) ) )  .<_  ( ( G `  P ) 
 .\/  ( G `  Q ) ) )
 
Theoremcdlemg9 29624 The triples  <. P ,  ( F `  ( G `
 P ) ) ,  ( F `  P ) >. and  <. Q , 
( F `  ( G `  Q )
) ,  ( F `
 Q ) >. are axially perspective by dalaw 28876. Part of Lemma G of [Crawley] p. 116, last 2 lines. TODO: FIX COMMENT (Contributed by NM, 1-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  .<_  ( ( ( ( F `  ( G `  P ) )  .\/  ( G `  P ) )  ./\  ( ( F `  ( G `  Q ) )  .\/  ( G `  Q ) ) ) 
 .\/  ( ( ( G `  P ) 
 .\/  P )  ./\  (
 ( G `  Q )  .\/  Q ) ) ) )
 
Theoremcdlemg10b 29625 TODO: FIX COMMENT TODO: Can this be moved up as a stand-alone theorem in ltrn* area? (Contributed by NM, 4-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  F  e.  T )  ->  ( ( ( F `  P ) 
 .\/  ( F `  Q ) )  ./\  W )  =  ( ( P  .\/  Q )  ./\ 
 W ) )
 
Theoremcdlemg10bALTN 29626 TODO: FIX COMMENT TODO: Can this be moved up as a stand-alone theorem in ltrn* area? TODO: Compare this proof to cdlemg2m 29594 and pick best, if moved to ltrn* area. (Contributed by NM, 4-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  (
 ( ( F `  P )  .\/  ( F `
  Q ) ) 
 ./\  W )  =  ( ( P  .\/  Q )  ./\  W ) )
 
Theoremcdlemg11a 29627 TODO: FIX COMMENT (Contributed by NM, 4-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( F `  ( G `
  P ) )  =/=  P )
 
Theoremcdlemg11aq 29628 TODO: FIX COMMENT TODO: can proof using this be restructured to use cdlemg11a 29627? (Contributed by NM, 4-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( F `  ( G `
  Q ) )  =/=  Q )
 
Theoremcdlemg10c 29629 TODO: FIX COMMENT TODO: Can this be moved up as a stand-alone theorem in trl* area? (Contributed by NM, 4-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T ) )  ->  ( ( R `  F ) 
 .<_  ( ( G `  P )  .\/  ( G `
  Q ) )  <-> 
 ( R `  F )  .<_  ( P  .\/  Q ) ) )
 
Theoremcdlemg10a 29630 TODO: FIX COMMENT (Contributed by NM, 3-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 ) )  ->  (
 ( P  .\/  ( F `  ( G `  P ) ) ) 
 ./\  ( Q  .\/  ( F `  ( G `
  Q ) ) ) )  .<_  ( ( R `  F ) 
 .\/  ( R `  G ) ) )
 
Theoremcdlemg10 29631 TODO: FIX COMMENT (Contributed by NM, 4-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 ) )  ->  (
 ( P  .\/  ( F `  ( G `  P ) ) ) 
 ./\  ( Q  .\/  ( F `  ( G `
  Q ) ) ) )  .<_  W )
 
Theoremcdlemg11b 29632 TODO: FIX COMMENT (Contributed by NM, 5-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  ( G  e.  T  /\  P  =/=  Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 ) )  ->  ( P  .\/  Q )  =/=  ( ( G `  P )  .\/  ( G `
  Q ) ) )
 
Theoremcdlemg12a 29633 TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  ( P  .\/  U )  =/=  ( ( G `
  P )  .\/  U ) ) )  ->  ( ( P  .\/  U )  ./\  ( ( G `  P )  .\/  U ) )  .<_  ( ( F `  ( G `
  P ) ) 
 .\/  U ) )
 
Theoremcdlemg12b 29634 The triples  <. P ,  ( F `  P ) ,  ( F `  ( G `  P ) ) >. and  <. Q , 
( F `  Q
) ,  ( F `
 ( G `  Q ) ) >. are centrally perspective. TODO: FIX COMMENT (Contributed by NM, 5-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( ( G `  P )  .\/  ( G `  Q ) ) )  .<_  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) ) )
 
Theoremcdlemg12c 29635 The triples  <. P ,  ( F `  P ) ,  ( F `  ( G `  P ) ) >. and  <. Q , 
( F `  Q
) ,  ( F `
 ( G `  Q ) ) >. are axially perspective by dalaw 28876. TODO: FIX COMMENT (Contributed by NM, 5-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( G `  P ) )  ./\  ( Q  .\/  ( G `  Q ) ) )  .<_  ( ( ( ( G `
  P )  .\/  ( F `  ( G `
  P ) ) )  ./\  ( ( G `  Q )  .\/  ( F `  ( G `
  Q ) ) ) )  .\/  (
 ( ( F `  ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q )
 ) ) )
 
Theoremcdlemg12d 29636 TODO: FIX COMMENT (Contributed by NM, 5-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q 
 /\  -.  ( R `  F )  .<_  ( P 
 .\/  Q )  /\  -.  ( R `  G ) 
 .<_  ( P  .\/  Q ) ) )  ->  ( R `  G ) 
 .<_  ( ( R `  F )  .\/  ( ( ( F `  ( G `  P ) ) 
 .\/  P )  ./\  (
 ( F `  ( G `  Q ) ) 
 .\/  Q ) ) ) )
 
Theoremcdlemg12e 29637 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  .0.  =  ( 0. `  K )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q )  /\  ( -.  ( R `  F )  .<_  ( P 
 .\/  Q )  /\  -.  ( R `  G ) 
 .<_  ( P  .\/  Q )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( (
 ( F `  ( G `  P ) ) 
 .\/  P )  ./\  (
 ( F `  ( G `  Q ) ) 
 .\/  Q ) )  =/= 
 .0.  )
 
Theoremcdlemg12f 29638 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 )  /\  ( R `  F )  =/=  ( R `  G )  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  .<_  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W ) )
 
Theoremcdlemg12g 29639 TODO: FIX COMMENT TODO: Combine with cdlemg12f 29638. (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 )  /\  ( R `  F )  =/=  ( R `  G )  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  =  ( ( P  .\/  ( F `  ( G `  P ) ) ) 
 ./\  W ) )
 
Theoremcdlemg12 29640 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 )  /\  ( R `  F )  =/=  ( R `  G )  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg13a 29641 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( F `
  P )  =/= 
 P  /\  ( R `  F )  =  ( R `  G ) 
 /\  ( ( F `
  ( G `  P ) )  .\/  ( F `  ( G `
  Q ) ) )  =/=  ( P 
 .\/  Q ) ) ) 
 ->  ( P  .\/  ( F `  ( G `  P ) ) )  =  ( ( G `
  P )  .\/  ( F `  ( G `
  P ) ) ) )
 
Theoremcdlemg13 29642 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( F `
  P )  =/= 
 P  /\  ( R `  F )  =  ( R `  G ) 
 /\  ( ( F `
  ( G `  P ) )  .\/  ( F `  ( G `
  Q ) ) )  =/=  ( P 
 .\/  Q ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg14f 29643 TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  P )  =  P )
 )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg14g 29644 TODO: FIX COMMENT (Contributed by NM, 22-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  ( G `  P )  =  P )
 )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg15a 29645 Eliminate the  ( F `  P )  =/=  P condition from cdlemg13 29642. TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( R `
  F )  =  ( R `  G )  /\  ( ( F `
  ( G `  P ) )  .\/  ( F `  ( G `
  Q ) ) )  =/=  ( P 
 .\/  Q ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg15 29646 Eliminate the  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) condition from cdlemg13 29642. TODO: FIX COMMENT (Contributed by NM, 25-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =  ( R `  G ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg16 29647 Part of proof of Lemma G of [Crawley] p. 116; 2nd line p. 117, which says that (our) cdlemg10 29631 "implies (2)" (of p. 116). No details are provided by the authors, so there may be a shorter proof; but ours requires the 14 lemmas, one using Desargues' law dalaw 28876, in order to make this inference. This final step eliminates the  ( R `  F )  =/=  ( R `  G ) condition from cdlemg12 29640. TODO: FIX COMMENT TODO: should we also eliminate  P  =/=  Q here (or earlier)? Do it if we don't need to add it in for something else later. (Contributed by NM, 6-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  (
 ( F `  ( G `  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg16ALTN 29648 This version of cdlemg16 29647 uses cdlemg15a 29645 instead of cdlemg15 29646, in case cdlemg15 29646 ends up not being needed. TODO: FIX COMMENT (Contributed by NM, 6-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  P  =/=  Q )  /\  ( ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q )
 ) )  ->  (
 ( P  .\/  ( F `  ( G `  P ) ) ) 
 ./\  W )  =  ( ( Q  .\/  ( F `  ( G `  Q ) ) ) 
 ./\  W ) )
 
Theoremcdlemg16z 29649 Eliminate  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) condition from cdlemg16 29647. TODO: would it help to also eliminate  P  =/=  Q here or later? (Contributed by NM, 25-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( -.  ( R `  F )  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg16zz 29650 Eliminate  P  =/=  Q from cdlemg16z 29649. TODO: Use this only if needed. (Contributed by NM, 26-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  ( R `  F )  .<_  ( P 
 .\/  Q )  /\  -.  ( R `  G ) 
 .<_  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg17a 29651 TODO: FIX COMMENT (Contributed by NM, 8-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( G  e.  T  /\  ( R `  G )  .<_  ( P 
 .\/  Q ) ) ) 
 ->  ( G `  P )  .<_  ( P  .\/  Q ) )
 
Theoremcdlemg17b 29652* Part of proof of Lemma G in [Crawley] p. 117, 4th line. Whenever (in their terminology) p  \/ q/0 (i.e. the sublattice from 0 to p  \/ q) contains precisely three atoms and g is not the identity, g(p) = q. See also comments under cdleme0nex 29280. (Contributed by NM, 8-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( G  e.  T  /\  P  =/=  Q )  /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  P )  =  Q )
 
Theoremcdlemg17dN 29653* TODO: fix comment. (Contributed by NM, 9-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  =/=  Q )  /\  ( ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  /\  ( G `  P )  =/=  P ) ) 
 ->  ( R `  G )  =  ( ( P  .\/  Q )  ./\  W ) )
 
Theoremcdlemg17dALTN 29654 Same as cdlemg17dN 29653 with fewer antecedents but longer proof TODO: fix comment. (Contributed by NM, 9-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( R `
  G )  .<_  ( P  .\/  Q )  /\  ( G `  P )  =/=  P ) ) 
 ->  ( R `  G )  =  ( ( P  .\/  Q )  ./\  W ) )
 
Theoremcdlemg17e 29655* TODO: fix comment. (Contributed by NM, 8-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( F `  P )  .\/  ( F `  Q ) )  =  ( ( F `  P ) 
 .\/  ( R `  G ) ) )
 
Theoremcdlemg17f 29656* TODO: fix comment. (Contributed by NM, 8-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( F `  P )  .\/  ( F `  Q ) )  =  ( ( F `  P ) 
 .\/  ( G `  ( F `  P ) ) ) )
 
Theoremcdlemg17g 29657* TODO: fix comment. (Contributed by NM, 9-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  ( F `  P ) )  .<_  ( ( F `  P ) 
 .\/  ( F `  Q ) ) )
 
Theoremcdlemg17h 29658* TODO: fix comment. (Contributed by NM, 10-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) 
 /\  ( P  =/=  Q 
 /\  S  .<_  ( ( F `  P ) 
 .\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) ) ) ) 
 ->  ( S  =  ( F `  P )  \/  S  =  ( F `  Q ) ) )
 
Theoremcdlemg17i 29659* TODO: fix comment. (Contributed by NM, 10-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  ( F `  P ) )  =  ( F `  Q ) )
 
Theoremcdlemg17ir 29660* TODO: fix comment. (Contributed by NM, 13-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( F `  ( G `  P ) )  =  ( F `  Q ) )
 
Theoremcdlemg17j 29661* TODO: fix comment. (Contributed by NM, 11-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  ( F `  P ) )  =  ( F `  ( G `  P ) ) )
 
Theoremcdlemg17pq 29662* Utility theorem for swapping  P and  Q. TODO: fix comment. (Contributed by NM, 11-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( (
 ( K  e.  HL  /\  W  e.  H ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  Q  =/=  P ) 
 /\  ( ( G `
  Q )  =/= 
 Q  /\  ( R `  G )  .<_  ( Q 
 .\/  P )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( Q  .\/  r )  =  ( P  .\/  r ) ) ) ) )
 
Theoremcdlemg17bq 29663* cdlemg17b 29652 with  P and  Q swapped. Antecedent  F  e.  ( T `  W ) is redundant for easier use. TODO: should we have redundant antecedent for cdlemg17b 29652 also? (Contributed by NM, 13-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  Q )  =  P )
 
Theoremcdlemg17iqN 29664* cdlemg17i 29659 with  P and  Q swapped. (Contributed by NM, 13-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  P  =/=  Q )  /\  ( ( R `
  G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) )  /\  ( G `  P )  =/= 
 P ) )  ->  ( G `  ( F `
  Q ) )  =  ( F `  P ) )
 
Theoremcdlemg17irq 29665* cdlemg17ir 29660 with  P and  Q swapped. (Contributed by NM, 13-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( F `  ( G `  Q ) )  =  ( F `  P ) )
 
Theoremcdlemg17jq 29666* cdlemg17j 29661 with  P and  Q swapped. (Contributed by NM, 13-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  ( F `  Q ) )  =  ( F `  ( G `  Q ) ) )
 
Theoremcdlemg17 29667* Part of Lemma G of [Crawley] p. 117, lines 7 and 8. We show an argument whose value at  G equals itself. TODO: fix comment. (Contributed by NM, 12-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( G `
  P )  =/= 
 P  /\  ( R `  G )  .<_  ( P 
 .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( G `  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) ) )  =  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) ) )
 
Theoremcdlemg18a 29668 Show two lines are different. TODO: fix comment. (Contributed by NM, 14-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  F  e.  T )  /\  ( P  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `
  P ) )  =/=  ( P  .\/  Q ) ) )  ->  ( P  .\/  ( F `
  Q ) )  =/=  ( Q  .\/  ( F `  P ) ) )
 
Theoremcdlemg18b 29669 Lemma for cdlemg18c 29670. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  F  e.  T )  /\  ( P  =/=  Q 
 /\  ( F `  P )  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `
  P ) )  =/=  ( P  .\/  Q ) ) )  ->  -.  P  .<_  ( U  .\/  ( F `  Q ) ) )
 
Theoremcdlemg18c 29670 Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  U  =  ( ( P  .\/  Q )  ./\  W )   =>    |-  (
 ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) 
 /\  F  e.  T )  /\  ( P  =/=  Q 
 /\  ( F `  P )  =/=  Q  /\  ( ( F `  Q )  .\/  ( F `
  P ) )  =/=  ( P  .\/  Q ) ) )  ->  ( ( P  .\/  ( F `  Q ) )  ./\  ( Q  .\/  ( F `  P ) ) )  e.  A )
 
Theoremcdlemg18d 29671* Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
  P )  =/= 
 P )  /\  (
 ( R `  G )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  e.  A )
 
Theoremcdlemg18 29672* Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
  P )  =/= 
 P )  /\  (
 ( R `  G )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  .<_  W )
 
Theoremcdlemg19a 29673* Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
  P )  =/= 
 P )  /\  (
 ( R `  G )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  =  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )
 )
 
Theoremcdlemg19 29674* Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( G `
  P )  =/= 
 P )  /\  (
 ( R `  G )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg20 29675* Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 23-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( R `
  G )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg21 29676* Version of cdlemg19 with  ( R `  F
)  .<_  ( P  .\/  Q ) instead of  ( R `  G )  .<_  ( P 
.\/  Q ) as a condition. (Contributed by NM, 23-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
  P )  =/= 
 P )  /\  (
 ( R `  F )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg22 29677* cdlemg21 29676 with  ( F `  P )  =/=  P condition removed. (Contributed by NM, 23-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( R `
  F )  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
 .\/  r )  =  ( Q  .\/  r
 ) ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )
 )
 
Theoremcdlemg24 29678* Combine cdlemg16z 29649 and cdlemg22 29677. TODO: Fix comment. (Contributed by NM, 24-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) 
 /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) 
 /\  ( ( ( F `  ( G `
  P ) ) 
 .\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg37 29679* Use cdlemg8 29621 to eliminate the  =/=  ( P  .\/  Q
) condition of cdlemg24 29678. (Contributed by NM, 31-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  P  =/=  Q  /\  -. 
 E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W )  =  ( ( Q 
 .\/  ( F `  ( G `  Q ) ) )  ./\  W ) )
 
Theoremcdlemg25zz 29680 cdlemg16zz 29650 restated for easier studying. TODO: Discard this after everything is figured out. (Contributed by NM, 26-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  ( R `  F )  .<_  ( P 
 .\/  z )  /\  -.  ( R `  G )  .<_  ( P  .\/  z ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( z  .\/  ( F `  ( G `
  z ) ) )  ./\  W )
 )
 
Theoremcdlemg26zz 29681 cdlemg16zz 29650 restated for easier studying. TODO: Discard this after everything is figured out. (Contributed by NM, 26-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  -.  ( R `  F )  .<_  ( Q 
 .\/  z )  /\  -.  ( R `  G )  .<_  ( Q  .\/  z ) ) ) 
 ->  ( ( Q  .\/  ( F `  ( G `
  Q ) ) )  ./\  W )  =  ( ( z  .\/  ( F `  ( G `
  z ) ) )  ./\  W )
 )
 
Theoremcdlemg27a 29682 For use with case when  ( P  .\/  v
)  ./\  ( Q  .\/  ( R `  F
) ) or  ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) is zero, letting us establish  -.  z  .<_  W  /\  z  .<_  ( P 
.\/  v ) via 4atex 29066. TODO: Fix comment. (Contributed by NM, 28-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( z  e.  A  /\  F  e.  T ) 
 /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P 
 .\/  v )  /\  ( F `  P )  =/=  P ) ) 
 ->  -.  ( R `  F )  .<_  ( P 
 .\/  z ) )
 
Theoremcdlemg28a 29683 Part of proof of Lemma G of [Crawley] p. 116. First equality of the equation of line 14 on p. 117. (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H ) 
 /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( v  =/=  ( R `
  F )  /\  v  =/=  ( R `  G ) )  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/= 
 P ) ) ) 
 ->  ( ( P  .\/  ( F `  ( G `
  P ) ) )  ./\  W )  =  ( ( z  .\/  ( F `  ( G `
  z ) ) )  ./\  W )
 )
 
Theoremcdlemg31b0N 29684 TODO: Fix comment. (Contributed by NM, 30-May-2013.) (New usage is discouraged.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  F  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  v  =/=  ( R `  F )  /\  ( F `
  P )  =/= 
 P ) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K ) ) )
 
Theoremcdlemg31b0a 29685 TODO: Fix comment. (Contributed by NM, 30-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
 ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F ) ) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K ) ) )
 
Theoremcdlemg27b 29686 TODO: Fix comment. (Contributed by NM, 28-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) 
 /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  (
 z  e.  A  /\  ( v  e.  A  /\  v  .<_  W ) 
 /\  ( F  e.  T  /\  z  =/=  N ) )  /\  ( v  =/=  ( R `  F )  /\  z  .<_  ( P  .\/  v )  /\  ( F `  P )  =/=  P ) ) 
 ->  -.  ( R `  F )  .<_  ( Q 
 .\/  z ) )
 
Theoremcdlemg31a 29687 TODO: fix comment. (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( v  e.  A  /\  F  e.  T ) )  ->  N  .<_  ( P  .\/  v )
 )
 
Theoremcdlemg31b 29688 TODO: fix comment. (Contributed by NM, 29-May-2013.)
 |-  .<_  =  ( le `  K )   &    |- 
 .\/  =  ( join `  K )   &    |-  ./\  =  ( meet `  K )   &    |-  A  =  ( Atoms `  K )   &    |-  H  =  ( LHyp `  K )   &    |-  T  =  ( ( LTrn `  K ) `  W )   &    |-  R  =  ( ( trL `  K ) `  W )   &    |-  N  =  ( ( P  .\/  v )  ./\  ( Q 
 .\/  ( R `  F ) ) )   =>    |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( v  e.  A  /\  F  e.  T ) )  ->  N  .<_  ( Q  .\/  ( R `  F ) ) )
 
Theoremcdlemg31c 29689 Show that when  N is an atom, it is not under  W. TODO: Is there a shorter direct proof? Todo: should we eliminate <