HomeHome Metamath Proof Explorer
Theorem List (p. 311 of 315)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21494)
  Hilbert Space Explorer  Hilbert Space Explorer
(21495-23017)
  Users' Mathboxes  Users' Mathboxes
(23018-31433)
 

Theorem List for Metamath Proof Explorer - 31001-31100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlclkrlem2 31001* The set of functionals having closed kernels is closed under vector (functional) addition. Lemmas lclkrlem2a 30976 through lclkrlem2y 31000 are used for the proof. Here we express lclkrlem2y 31000 in terms of membership in the set  C of functionals with closed kernels. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  E  e.  C )   &    |-  ( ph  ->  G  e.  C )   =>    |-  ( ph  ->  ( E  .+  G )  e.  C )
 
Theoremlclkr 31002* The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of [Holland95] p. 218, line 20, stating "The fM that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  S  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  C  e.  S )
 
Theoremlcfls1lem 31003* Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.)
 |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  Q ) }   =>    |-  ( G  e.  C  <->  ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G ) ) )  =  ( L `
  G )  /\  (  ._|_  `  ( L `  G ) )  C_  Q ) )
 
Theoremlcfls1N 31004* Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.)
 |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  Q ) }   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( G  e.  C  <->  ( (  ._|_  `  (  ._|_  `  ( L `
  G ) ) )  =  ( L `
  G )  /\  (  ._|_  `  ( L `  G ) )  C_  Q ) ) )
 
Theoremlcfls1c 31005* Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015.)
 |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  Q ) }   &    |-  D  =  {
 f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   =>    |-  ( G  e.  C  <->  ( G  e.  D  /\  (  ._|_  `  ( L `  G ) ) 
 C_  Q ) )
 
Theoremlclkrslem1 31006* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  Q is closed under scalar product. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  D )   &    |-  C  =  { f  e.  F  |  ( ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  Q  e.  S )   &    |-  ( ph  ->  G  e.  C )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( X  .x.  G )  e.  C )
 
Theoremlclkrslem2 31007* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  Q is closed under scalar product. (Contributed by NM, 28-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  D )   &    |-  C  =  { f  e.  F  |  ( ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  Q  e.  S )   &    |-  ( ph  ->  G  e.  C )   &    |- 
 .+  =  ( +g  `  D )   &    |-  ( ph  ->  E  e.  C )   =>    |-  ( ph  ->  ( E  .+  G )  e.  C )
 
Theoremlclkrs 31008* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  R is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr 31002 proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr 31002 a special case of this? (Contributed by NM, 29-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  R ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  R  e.  S )   =>    |-  ( ph  ->  C  e.  T )
 
Theoremlclkrs2 31009* The set of functionals with closed kernels and majorizing the orthocomplement of a given subspace  Q is a subspace of the dual space containing functionals with closed kernels. Note that  R is the value given by mapdval 31097. (Contributed by NM, 12-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  R  =  { g  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  g ) ) )  =  ( L `  g )  /\  (  ._|_  `  ( L `  g
 ) )  C_  Q ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  Q  e.  S )   =>    |-  ( ph  ->  ( R  e.  T  /\  R  C_  C ) )
 
TheoremlcfrvalsnN 31010* Reconstruction from the dual space span of a singleton. (Contributed by NM, 19-Feb-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  N  =  ( LSpan `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  Q  =  U_ f  e.  R  (  ._|_  `  ( L `  f ) )   &    |-  R  =  ( N `  { G } )   =>    |-  ( ph  ->  Q  =  (  ._|_  `  ( L `  G ) ) )
 
Theoremlcfrlem1 31011 Lemma for lcfr 31054. Note that  X is z in Mario's notes. (Contributed by NM, 27-Feb-2015.)
 |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  (
 invr `  S )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .x.  =  ( .s `  D )   &    |-  .-  =  ( -g `  D )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( G `  X )  =/=  .0.  )   &    |-  H  =  ( E  .-  (
 ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )   =>    |-  ( ph  ->  ( H `  X )  =  .0.  )
 
Theoremlcfrlem2 31012 Lemma for lcfr 31054. (Contributed by NM, 27-Feb-2015.)
 |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  (
 invr `  S )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .x.  =  ( .s `  D )   &    |-  .-  =  ( -g `  D )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( G `  X )  =/=  .0.  )   &    |-  H  =  ( E  .-  (
 ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )   &    |-  L  =  (LKer `  U )   =>    |-  ( ph  ->  (
 ( L `  E )  i^i  ( L `  G ) )  C_  ( L `  H ) )
 
Theoremlcfrlem3 31013 Lemma for lcfr 31054. (Contributed by NM, 27-Feb-2015.)
 |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  (
 invr `  S )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .x.  =  ( .s `  D )   &    |-  .-  =  ( -g `  D )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( G `  X )  =/=  .0.  )   &    |-  H  =  ( E  .-  (
 ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )   &    |-  L  =  (LKer `  U )   =>    |-  ( ph  ->  X  e.  ( L `  H ) )
 
Theoremlcfrlem4 31014* Lemma for lcfr 31054. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  X  e.  E )   =>    |-  ( ph  ->  X  e.  V )
 
Theoremlcfrlem5 31015* Lemma for lcfr 31054. The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  Q is closed under scalar product. TODO: share hypotheses with others. Use more consistent variable names here or elsewhere when possible. (Contributed by NM, 5-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  S  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  S )   &    |-  Q  =  U_ f  e.  R  (  ._|_  `  ( L `  f ) )   &    |-  ( ph  ->  X  e.  Q )   &    |-  C  =  (Scalar `  U )   &    |-  B  =  ( Base `  C )   &    |-  .x.  =  ( .s `  U )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  ( A  .x.  X )  e.  Q )
 
Theoremlcfrlem6 31016* Lemma for lcfr 31054. Closure of vector sum with colinear vectors. TODO: Move down  N definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   &    |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem7 31017* Lemma for lcfr 31054. Closure of vector sum when one vector is zero. TODO: share hypotheses with others. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  E )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  ( ph  ->  Y  =  .0.  )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem8 31018* Lemma for lcf1o 31020 and lcfr 31054. (Contributed by NM, 21-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( J `  X )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { X }
 ) v  =  ( w  .+  ( k 
 .x.  X ) ) ) ) )
 
Theoremlcfrlem9 31019* Lemma for lcf1o 31020. (This part has undesirable $d's on  J and  ph that we remove in lcf1o 31020.) TODO: ugly proof; maybe have better subtheorems or abbreviate some  iota_
k expansions with  J `  z? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  J : ( V  \  {  .0.  } ) -1-1-onto-> ( C 
 \  { Q }
 ) )
 
Theoremlcf1o 31020* Define a function  J that provides a bijection from nonzero vectors  V to nonzero functionals with closed kernels  C. (Contributed by NM, 22-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  J : ( V  \  {  .0.  } ) -1-1-onto-> ( C 
 \  { Q }
 ) )
 
Theoremlcfrlem10 31021* Lemma for lcfr 31054. (Contributed by NM, 23-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( J `  X )  e.  F )
 
Theoremlcfrlem11 31022* Lemma for lcfr 31054. (Contributed by NM, 23-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( L `  ( J `  X ) )  =  (  ._|_  `  { X } ) )
 
Theoremlcfrlem12N 31023* Lemma for lcfr 31054. (Contributed by NM, 23-Feb-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  B  =  ( 0g `  S )   &    |-  ( ph  ->  Y  e.  (  ._|_  `  { X }
 ) )   =>    |-  ( ph  ->  (
 ( J `  X ) `  Y )  =  B )
 
Theoremlcfrlem13 31024* Lemma for lcfr 31054. (Contributed by NM, 8-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( J `  X )  e.  ( C  \  { Q } ) )
 
Theoremlcfrlem14 31025* Lemma for lcfr 31054. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  N  =  (
 LSpan `  U )   =>    |-  ( ph  ->  ( 
 ._|_  `  ( L `  ( J `  X ) ) )  =  ( N `  { X } ) )
 
Theoremlcfrlem15 31026* Lemma for lcfr 31054. (Contributed by NM, 9-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  X  e.  (  ._|_  `  ( L `  ( J `  X ) ) ) )
 
Theoremlcfrlem16 31027* Lemma for lcfr 31054. (Contributed by NM, 8-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  P  =  ( LSubSp `  D )   &    |-  ( ph  ->  G  e.  P )   &    |-  ( ph  ->  G  C_  C )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  ( E  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( J `  X )  e.  G )
 
Theoremlcfrlem17 31028 Lemma for lcfr 31054. Condition needed more than once. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  ( V  \  {  .0.  } ) )
 
Theoremlcfrlem18 31029 Lemma for lcfr 31054. (Contributed by NM, 24-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  (  ._|_  `  { X ,  Y } )  =  ( (  ._|_  `  { X } )  i^i  (  ._|_  ` 
 { Y } )
 ) )
 
Theoremlcfrlem19 31030 Lemma for lcfr 31054. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { ( X  .+  Y ) } )  \/  -.  Y  e.  (  ._|_  `  { ( X 
 .+  Y ) }
 ) ) )
 
Theoremlcfrlem20 31031 Lemma for lcfr 31054. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  ( ph  ->  -.  X  e.  (  ._|_  ` 
 { ( X  .+  Y ) } )
 )   =>    |-  ( ph  ->  (
 ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )  e.  A )
 
Theoremlcfrlem21 31032 Lemma for lcfr 31054. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  (
 ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )  e.  A )
 
Theoremlcfrlem22 31033 Lemma for lcfr 31054. (Contributed by NM, 24-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   =>    |-  ( ph  ->  B  e.  A )
 
Theoremlcfrlem23 31034 Lemma for lcfr 31054. TODO: this proof was built from other proof pieces that may change  N `  { X ,  Y } into subspace sum and back unnecessarily, or similar things. (Contributed by NM, 1-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .(+)  =  ( LSSum `  U )   =>    |-  ( ph  ->  (
 (  ._|_  `  { X ,  Y } )  .(+)  B )  =  (  ._|_  `  { ( X  .+  Y ) }
 ) )
 
Theoremlcfrlem24 31035* Lemma for lcfr 31054. (Contributed by NM, 24-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   =>    |-  ( ph  ->  (  ._|_  `  { X ,  Y } )  =  ( ( L `  ( J `  X ) )  i^i  ( L `  ( J `  Y ) ) ) )
 
Theoremlcfrlem25 31036* Lemma for lcfr 31054. Special case of lcfrlem35 31046 when  ( ( J `
 Y ) `  I ) is zero. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =  Q )   &    |-  ( ph  ->  I  =/=  .0.  )   =>    |-  ( ph  ->  ( 
 ._|_  `  { ( X 
 .+  Y ) }
 )  =  ( L `
  ( J `  Y ) ) )
 
Theoremlcfrlem26 31037* Lemma for lcfr 31054. Special case of lcfrlem36 31047 when  ( ( J `
 Y ) `  I ) is zero. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =  Q )   &    |-  ( ph  ->  I  =/=  .0.  )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  (  ._|_  `  ( L `  ( J `  Y ) ) ) )
 
Theoremlcfrlem27 31038* Lemma for lcfr 31054. Special case of lcfrlem37 31048 when  ( ( J `
 Y ) `  I ) is zero. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =  Q )   &    |-  ( ph  ->  I  =/=  .0.  )   &    |-  ( ph  ->  G  e.  ( LSubSp `
  D ) )   &    |-  ( ph  ->  G  C_  { f  e.  (LFnl `  U )  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) } )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem28 31039* Lemma for lcfr 31054. TODO: This can be a hypothesis since the zero version of  ( J `  Y ) `  I needs it. (Contributed by NM, 9-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   =>    |-  ( ph  ->  I  =/=  .0.  )
 
Theoremlcfrlem29 31040* Lemma for lcfr 31054. (Contributed by NM, 9-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   =>    |-  ( ph  ->  ( ( F `  (
 ( J `  Y ) `  I ) ) ( .r `  S ) ( ( J `
  X ) `  I ) )  e.  R )
 
Theoremlcfrlem30 31041* Lemma for lcfr 31054. (Contributed by NM, 6-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   =>    |-  ( ph  ->  C  e.  (LFnl `  U )
 )
 
Theoremlcfrlem31 31042* Lemma for lcfr 31054. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   &    |-  ( ph  ->  ( ( J `  X ) `  I )  =/= 
 Q )   &    |-  ( ph  ->  C  =  ( 0g `  D ) )   =>    |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y }
 ) )
 
Theoremlcfrlem32 31043* Lemma for lcfr 31054. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   &    |-  ( ph  ->  ( ( J `  X ) `  I )  =/= 
 Q )   =>    |-  ( ph  ->  C  =/=  ( 0g `  D ) )
 
Theoremlcfrlem33 31044* Lemma for lcfr 31054. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   &    |-  ( ph  ->  ( ( J `  X ) `  I )  =  Q )   =>    |-  ( ph  ->  C  =/=  ( 0g `  D ) )
 
Theoremlcfrlem34 31045* Lemma for lcfr 31054. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   =>    |-  ( ph  ->  C  =/=  ( 0g `  D ) )
 
Theoremlcfrlem35 31046* Lemma for lcfr 31054. (Contributed by NM, 2-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   =>    |-  ( ph  ->  (  ._|_  `  { ( X 
 .+  Y ) }
 )  =  ( L `
  C ) )
 
Theoremlcfrlem36 31047* Lemma for lcfr 31054. (Contributed by NM, 6-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  (  ._|_  `  ( L `
  C ) ) )
 
Theoremlcfrlem37 31048* Lemma for lcfr 31054. (Contributed by NM, 8-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   &    |-  ( ph  ->  G  e.  ( LSubSp `  D ) )   &    |-  ( ph  ->  G 
 C_  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }
 )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem38 31049* Lemma for lcfr 31054. Combine lcfrlem27 31038 and lcfrlem37 31048. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  G  C_  C )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  =/=  .0.  )   &    |-  ( ph  ->  Y  =/=  .0.  )   &    |-  N  =  ( LSpan `  U )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  B  =  ( ( N `  { X ,  Y }
 )  i^i  (  ._|_  ` 
 { ( X  .+  Y ) } )
 )   &    |-  ( ph  ->  I  e.  B )   &    |-  ( ph  ->  I  =/=  .0.  )   &    |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem39 31050* Lemma for lcfr 31054. Eliminate  J. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  G  C_  C )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  =/=  .0.  )   &    |-  ( ph  ->  Y  =/=  .0.  )   &    |-  N  =  ( LSpan `  U )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   &    |-  B  =  ( ( N `  { X ,  Y }
 )  i^i  (  ._|_  ` 
 { ( X  .+  Y ) } )
 )   &    |-  ( ph  ->  I  e.  B )   &    |-  ( ph  ->  I  =/=  .0.  )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem40 31051* Lemma for lcfr 31054. Eliminate  B and  I. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  G  C_  C )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  =/=  .0.  )   &    |-  ( ph  ->  Y  =/=  .0.  )   &    |-  N  =  ( LSpan `  U )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem41 31052* Lemma for lcfr 31054. Eliminate span condition. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  G  C_  C )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   &    |-  .0.  =  ( 0g `  U )   &    |-  ( ph  ->  X  =/=  .0.  )   &    |-  ( ph  ->  Y  =/=  .0.  )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem42 31053* Lemma for lcfr 31054. Eliminate nonzero condition. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  (LFnl `  U )  |  ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  G  C_  C )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfr 31054* Reconstruction of a subspace from a dual subspace of functionals with closed kernels. Our proof was suggested by Mario Carneiro, 20-Feb-2015. (Contributed by NM, 5-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  Q  =  U_ g  e.  R  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  T )   &    |-  ( ph  ->  R  C_  C )   =>    |-  ( ph  ->  Q  e.  S )
 
Syntaxclcd 31055 Extend class notation with vector space of functionals with closed kernels.
 class LCDual
 
Definitiondf-lcdual 31056* Dual vector space of functionals with closed kernels. Note: we could also define this directly without mapd by using mapdrn 31118. TODO: see if it makes sense to go back and replace some of the LDual stuff with this. TODO: We could simplify df-mapd 31094 using  ( Base `  (
(LCDual `  K ) `  W ) ). (Contributed by NM, 13-Mar-2015.)
 |- LCDual  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( (LDual `  ( ( DVecH `  k
 ) `  w )
 )s  { f  e.  (LFnl `  ( ( DVecH `  k
 ) `  w )
 )  |  ( ( ( ocH `  k
 ) `  w ) `  ( ( ( ocH `  k ) `  w ) `  ( (LKer `  ( ( DVecH `  k
 ) `  w )
 ) `  f )
 ) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f ) } )
 ) )
 
Theoremlcdfval 31057* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  X  ->  (LCDual `  K )  =  ( w  e.  H  |->  ( (LDual `  ( ( DVecH `  K ) `  w ) )s  { f  e.  (LFnl `  ( ( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w ) `  ( ( ( ocH `  K ) `  w ) `  (
 (LKer `  ( ( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `
  f ) }
 ) ) )
 
Theoremlcdval 31058* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( K  e.  X  /\  W  e.  H ) )   =>    |-  ( ph  ->  C  =  ( Ds  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) } )
 )
 
Theoremlcdval2 31059* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( K  e.  X  /\  W  e.  H ) )   &    |-  B  =  {
 f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   =>    |-  ( ph  ->  C  =  ( Ds  B ) )
 
Theoremlcdlvec 31060 The dual vector space of functionals with closed kernels is a left vector space. (Contributed by NM, 14-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  C  e.  LVec )
 
Theoremlcdlmod 31061 The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  C  e.  LMod )
 
Theoremlcdvbase 31062* Vector base set of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  B  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  V  =  B )
 
Theoremlcdvbasess 31063 The vector base set of the closed kernel dual space is a set of functionals. (Contributed by NM, 15-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  V  C_  F )
 
Theoremlcdvbaselfl 31064 A vector in the base set of the closed kernel dual space is a functional. (Contributed by NM, 28-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  X  e.  F )
 
Theoremlcdvbasecl 31065 Closure of the value of a vector (functional) in the closed kernel dual space. (Contributed by NM, 28-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  E  =  ( Base `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  E )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( F `  X )  e.  R )
 
Theoremlcdvadd 31066 Vector addition for the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  .+b  =  .+  )
 
Theoremlcdvaddval 31067 The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .+  =  ( +g  `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  G  e.  D )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  (
 ( F  .+b  G ) `
  X )  =  ( ( F `  X )  .+  ( G `
  X ) ) )
 
Theoremlcdsca 31068 The ring of scalars of the closed kernel dual space. (Contributed by NM, 16-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  O  =  (oppr `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  R  =  (Scalar `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   =>    |-  ( ph  ->  R  =  O )
 
Theoremlcdsbase 31069 Base set of scalar ring for the closed kernel dual of a vector space. (Contributed by NM, 18-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  L  =  ( Base `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  R  =  ( Base `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  R  =  L )
 
Theoremlcdsadd 31070 Scalar addition for the closed kernel vector space dual. (Contributed by NM, 6-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  .+  =  ( +g  `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  .+b  =  ( +g  `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  .+b  =  .+  )
 
Theoremlcdsmul 31071 Scalar multiplication for the closed kernel vector space dual. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  L  =  ( Base `  F )   &    |-  .x.  =  ( .r `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  .xb  =  ( .r `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  L )   &    |-  ( ph  ->  Y  e.  L )   =>    |-  ( ph  ->  ( X  .xb  Y )  =  ( Y  .x.  X ) )
 
Theoremlcdvs 31072 Scalar product for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  D  =  (LDual `  U )   &    |-  .x.  =  ( .s `  D )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  .xb  =  ( .s `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   =>    |-  ( ph  ->  .xb  =  .x.  )
 
Theoremlcdvsval 31073 Value of scalar product operation value for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .x.  =  ( .r `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  R )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  (
 ( X  .xb  G ) `
  A )  =  ( ( G `  A )  .x.  X ) )
 
Theoremlcdvscl 31074 The scalar product operation value is a functional. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  .x.  =  ( .s `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  R )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  ( X  .x.  G )  e.  V )
 
Theoremlcdlssvscl 31075 Closure of scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  R  =  ( Base `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  V  =  ( Base `  C )   &    |-  .x.  =  ( .s `  C )   &    |-  S  =  ( LSubSp `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  L  e.  S )   &    |-  ( ph  ->  X  e.  R )   &    |-  ( ph  ->  Y  e.  L )   =>    |-  ( ph  ->  ( X  .x.  Y )  e.  L )
 
Theoremlcdvsass 31076 Associative law for scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  L  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  .xb  =  ( .s `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  L )   &    |-  ( ph  ->  Y  e.  L )   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  (
 ( Y  .x.  X )  .xb  G )  =  ( X  .xb  ( Y  .xb  G ) ) )
 
Theoremlcd0 31077 The zero scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  O  =  ( 0g
 `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  O  =  .0.  )
 
Theoremlcd1 31078 The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (Scalar `  U )   &    |-  .1.  =  ( 1r `  F )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  I  =  ( 1r
 `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  I  =  .1.  )
 
Theoremlcdneg 31079 The unit scalar of the closed kernel dual of a vector space. (Contributed by NM, 11-Jun-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  R  =  (Scalar `  U )   &    |-  M  =  ( inv g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  S  =  (Scalar `  C )   &    |-  N  =  ( inv g `  S )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  N  =  M )
 
Theoremlcd0v 31080 The zero functional in the set of functionals with closed kernels. (Contributed by NM, 20-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  R  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  R )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  O  =  ( 0g
 `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  O  =  ( V  X.  {  .0.  } ) )
 
Theoremlcd0v2 31081 The zero functional in the set of functionals with closed kernels. (Contributed by NM, 27-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  D  =  (LDual `  U )   &    |-  .0.  =  ( 0g `  D )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  O  =  ( 0g
 `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  O  =  .0.  )
 
Theoremlcd0vvalN 31082 Value of the zero functional at any vector. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .0.  =  ( 0g `  S )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  O  =  ( 0g
 `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( O `  X )  =  .0.  )
 
Theoremlcd0vcl 31083 Closure of the zero functional in the set of functionals with closed kernels. (Contributed by NM, 15-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  C  =  ( (LCDual `  K ) `