HomeHome Metamath Proof Explorer
Theorem List (p. 313 of 315)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21494)
  Hilbert Space Explorer  Hilbert Space Explorer
(21495-23017)
  Users' Mathboxes  Users' Mathboxes
(23018-31433)
 

Theorem List for Metamath Proof Explorer - 31201-31300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmapdheq4 31201* Lemma for ~? mapdh . Part (4) in [Baer] p. 46. (Contributed by NM, 12-Apr-2015.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )   =>    |-  ( ph  ->  ( I `  <. Y ,  G ,  Z >. )  =  E )
 
Theoremmapdh6lem1N 31202* Lemma for mapdh6N 31216. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =/=  ( N `  { Z } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )   =>    |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( J `  { ( F R ( G  .+b  E ) ) } ) )
 
Theoremmapdh6lem2N 31203* Lemma for mapdh6N 31216. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =/=  ( N `  { Z } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )   =>    |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } )
 )  =  ( J `
  { ( G 
 .+b  E ) } )
 )
 
Theoremmapdh6aN 31204* Lemma for mapdh6N 31216. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =/=  ( N `  { Z } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  Y >. ) 
 .+b  ( I `  <. X ,  F ,  Z >. ) ) )
 
Theoremmapdh6b0N 31205* Lemmma for mapdh6N 31216. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  ( ( N `  { X } )  i^i  ( N `
  { Y ,  Z } ) )  =  {  .0.  } )   =>    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
 
Theoremmapdh6bN 31206* Lemmma for mapdh6N 31216. (Contributed by NM, 24-Apr-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  Y  =  .0.  )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  Y >. ) 
 .+b  ( I `  <. X ,  F ,  Z >. ) ) )
 
Theoremmapdh6cN 31207* Lemmma for mapdh6N 31216. (Contributed by NM, 24-Apr-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  =  .0.  )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  Z } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
 
Theoremmapdh6dN 31208* Lemmma for mapdh6N 31216. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =  ( N `  { Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  -.  w  e.  ( N `
  { X ,  Y } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( w  .+  ( Y  .+  Z ) ) >. )  =  ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. ) ) )
 
Theoremmapdh6eN 31209* Lemmma for mapdh6N 31216. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =  ( N `  { Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  -.  w  e.  ( N `
  { X ,  Y } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( ( w  .+  Y )  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  ( w  .+  Y )
 >. )  .+b  ( I `
  <. X ,  F ,  Z >. ) ) )
 
Theoremmapdh6fN 31210* Lemmma for mapdh6N 31216. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =  ( N `  { Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  -.  w  e.  ( N `
  { X ,  Y } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( w  .+  Y ) >. )  =  ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) ) )
 
Theoremmapdh6gN 31211* Lemmma for mapdh6N 31216. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =  ( N `  { Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  -.  w  e.  ( N `
  { X ,  Y } ) )   =>    |-  ( ph  ->  ( ( I `  <. X ,  F ,  w >. ) 
 .+b  ( I `  <. X ,  F ,  ( Y  .+  Z )
 >. ) )  =  ( ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
 
Theoremmapdh6hN 31212* Lemmma for mapdh6N 31216. Part (6) of [Baer] p. 48 line 2. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =  ( N `  { Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  -.  w  e.  ( N `
  { X ,  Y } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
 
Theoremmapdh6iN 31213* Lemmma for mapdh6N 31216. Eliminate auxiliary vector  w. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =  ( N `  { Z } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
 
Theoremmapdh6jN 31214* Lemmma for mapdh6N 31216. Eliminate  ( N { Y } ) = ( N  { Z } ) hypothesis. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  Y >. ) 
 .+b  ( I `  <. X ,  F ,  Z >. ) ) )
 
Theoremmapdh6kN 31215* Lemmma for mapdh6N 31216. Eliminate nonzero vector requirement. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
 |-  Q  =  ( 0g `  C )   &    |-  I  =  ( x  e.  _V  |->  if (
 ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  H  =  ( LHyp `  K )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  (
 Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `
  { X }
 ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  .+  =  ( +g  `  U )   &    |-  .+b  =  ( +g  `  C )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  Z } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
 
Theoremmapdh6N 31216* Part (6) of [Baer] p. 47 line 6. Note that we use  -.  X  e.  ( N `  { Y ,  Z }
) which is equivalent to Baer's "Fx  i^i (Fy + Fz)" by lspdisjb 15875. TODO: If $ds with  I and  ph becomes a problem later, cbv's on  I variables here to get rid of them. . Maybe reorder hypotheses in lemmas to the more consistent order of this theorem so they can be shared with this theorem. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  .+b  =  ( +g  `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  Z } ) )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   =>    |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
 
Theoremmapdh7eN 31217* Part (7) of [Baer] p. 48 line 10 (5 of 6 cases). (Note: 1 of 6 and 2 of 6 are hypotheses a and b.) (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { u } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  u  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  v  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N `  { u } )  =/=  ( N `  { v }
 ) )   &    |-  ( ph  ->  -.  w  e.  ( N `
  { u ,  v } ) )   &    |-  ( ph  ->  ( I `  <. u ,  F ,  w >. )  =  E )   =>    |-  ( ph  ->  ( I `  <. w ,  E ,  u >. )  =  F )
 
Theoremmapdh7cN 31218* Part (7) of [Baer] p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { u } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  u  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  v  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N `  { u } )  =/=  ( N `  { v }
 ) )   &    |-  ( ph  ->  -.  w  e.  ( N `
  { u ,  v } ) )   &    |-  ( ph  ->  ( I `  <. u ,  F ,  v >. )  =  G )   =>    |-  ( ph  ->  ( I `  <. v ,  G ,  u >. )  =  F )
 
Theoremmapdh7dN 31219* Part (7) of [Baer] p. 48 line 10 (4 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { u } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  u  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  v  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N `  { u } )  =/=  ( N `  { v }
 ) )   &    |-  ( ph  ->  -.  w  e.  ( N `
  { u ,  v } ) )   &    |-  ( ph  ->  ( I `  <. u ,  F ,  v >. )  =  G )   &    |-  ( ph  ->  ( I `  <. u ,  F ,  w >. )  =  E )   =>    |-  ( ph  ->  ( I `  <. v ,  G ,  w >. )  =  E )
 
Theoremmapdh7fN 31220* Part (7) of [Baer] p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { u } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  u  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  v  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N `  { u } )  =/=  ( N `  { v }
 ) )   &    |-  ( ph  ->  -.  w  e.  ( N `
  { u ,  v } ) )   &    |-  ( ph  ->  ( I `  <. u ,  F ,  v >. )  =  G )   &    |-  ( ph  ->  ( I `  <. u ,  F ,  w >. )  =  E )   =>    |-  ( ph  ->  ( I `  <. w ,  E ,  v >. )  =  G )
 
Theoremmapdh75e 31221* Part (7) of [Baer] p. 48 line 10 (5 of 6 cases).  X,  Y,  Z are Baer's u, v, w. (Note: Cases 1 of 6 and 2 of 6 are hypotheses mapdh75b here and mapdh75a in mapdh75cN 31222.) (Contributed by NM, 2-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Z } )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( I `  <. Z ,  E ,  X >. )  =  F )
 
Theoremmapdh75cN 31222* Part (7) of [Baer] p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  ( N `  { X }
 )  =/=  ( N ` 
 { Y } )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( I `  <. Y ,  G ,  X >. )  =  F )
 
Theoremmapdh75d 31223* Part (7) of [Baer] p. 48 line 10 (4 of 6 cases). (Contributed by NM, 2-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )   &    |-  ( ph  ->  ( N `  { Y }
 )  =/=  ( N ` 
 { Z } )
 )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( I `  <. Y ,  G ,  Z >. )  =  E )
 
Theoremmapdh75fN 31224* Part (7) of [Baer] p. 48 line 10 (6 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )   &    |-  ( ph  ->  ( N `  { Y }
 )  =/=  ( N ` 
 { Z } )
 )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( I `  <. Z ,  E ,  Y >. )  =  G )
 
Syntaxchvm 31225 Extend class notation with vector to dual map.
 class HVMap
 
Definitiondf-hvmap 31226* Extend class notation with a map from each nonzero vector  x to a unique nonzero functional in the closed kernel dual space. (We could extend it to include the zero vector, but that is unnecessary for our purposes.) TODO: This pattern is used several times earlier e.g. lcf1o 31020, dochfl1 30945- should we update those to use this definition? (Contributed by NM, 23-Mar-2015.)
 |- HVMap  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  ( ( Base `  ( ( DVecH `  k
 ) `  w )
 )  \  { ( 0g `  ( ( DVecH `  k ) `  w ) ) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  k ) `  w ) )  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  k
 ) `  w )
 ) ) E. t  e.  ( ( ( ocH `  k ) `  w ) `  { x }
 ) v  =  ( t ( +g  `  (
 ( DVecH `  k ) `  w ) ) ( j ( .s `  ( ( DVecH `  k
 ) `  w )
 ) x ) ) ) ) ) ) )
 
Theoremhvmapffval 31227* Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
 |-  H  =  ( LHyp `  K )   =>    |-  ( K  e.  X  ->  (HVMap `  K )  =  ( w  e.  H  |->  ( x  e.  ( (
 Base `  ( ( DVecH `  K ) `  w ) )  \  { ( 0g `  ( ( DVecH `  K ) `  w ) ) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  K ) `  w ) )  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  K ) `  w ) ) ) E. t  e.  ( ( ( ocH `  K ) `  w ) `  { x }
 ) v  =  ( t ( +g  `  (
 ( DVecH `  K ) `  w ) ) ( j ( .s `  ( ( DVecH `  K ) `  w ) ) x ) ) ) ) ) ) )
 
Theoremhvmapfval 31228* Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  (
 Base `  S )   &    |-  M  =  ( (HVMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  A  /\  W  e.  H ) )   =>    |-  ( ph  ->  M  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ j  e.  R E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
 j  .x.  x )
 ) ) ) ) )
 
Theoremhvmapval 31229* Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  (
 Base `  S )   &    |-  M  =  ( (HVMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  A  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( M `  X )  =  ( v  e.  V  |->  (
 iota_ j  e.  R E. t  e.  ( O `  { X }
 ) v  =  ( t  .+  ( j 
 .x.  X ) ) ) ) )
 
TheoremhvmapvalvalN 31230* Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  (
 Base `  S )   &    |-  M  =  ( (HVMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  A  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  (
 ( M `  X ) `  Y )  =  ( iota_ j  e.  R E. t  e.  ( O `  { X }
 ) Y  =  ( t  .+  ( j 
 .x.  X ) ) ) )
 
TheoremhvmapidN 31231 The value of the vector to functional map, at the vector, is one. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .1.  =  ( 1r `  S )   &    |-  M  =  ( (HVMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( ( M `  X ) `  X )  =  .1.  )
 
Theoremhvmap1o 31232* The vector to functional map provides a bijection from nonzero vectors  V to nonzero functionals with closed kernels  C. (Contributed by NM, 27-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  ( O `
  ( O `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  M  =  ( (HVMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   =>    |-  ( ph  ->  M : ( V  \  {  .0.  } ) -1-1-onto-> ( C 
 \  { Q }
 ) )
 
TheoremhvmapclN 31233* Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  ( O `
  ( O `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  M  =  ( (HVMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( M `  X )  e.  ( C  \  { Q } ) )
 
Theoremhvmap1o2 31234 The vector to functional map provides a bijection from nonzero vectors  V to nonzero functionals with closed kernels  C. (Contributed by NM, 27-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  O  =  ( 0g `  C )   &    |-  M  =  ( (HVMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  M : ( V  \  {  .0.  } ) -1-1-onto-> ( F 
 \  { O }
 ) )
 
Theoremhvmapcl2 31235 Closure of the vector to functional map. (Contributed by NM, 27-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  F  =  ( Base `  C )   &    |-  O  =  ( 0g `  C )   &    |-  M  =  ( (HVMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( M `  X )  e.  ( F  \  { O } ) )
 
Theoremhvmaplfl 31236 The vector to functional map value is a functional. (Contributed by NM, 28-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  M  =  ( (HVMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( M `  X )  e.  F )
 
Theoremhvmaplkr 31237 Kernel of the vector to functional map. TODO: make this become lcfrlem11 31022. (Contributed by NM, 29-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  O  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  L  =  (LKer `  U )   &    |-  M  =  ( (HVMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( L `  ( M `
  X ) )  =  ( O `  { X } ) )
 
Theoremmapdhvmap 31238 Relationship between mapd and HVMap, which can be used to satify the last hypothesis of mapdpg 31175. Equation 10 of [Baer] p. 48. (Contributed by NM, 29-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  J  =  (
 LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  P  =  ( (HVMap `  K ) `  W )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { ( P `  X ) }
 ) )
 
Theoremlspindp5 31239 Obtain an independent vector set  U ,  X ,  Y from a vector 
U dependent on  X and  Z and another independent set  Z ,  X ,  Y. (Here we don't show the  ( N `  { X } )  =/=  ( N `  { Y } ) part of the independence, which passes straight through. We also don't show nonzero vector requirements that are redundant for this theorem. Different orderings can be obtained using lspexch 15878 and prcom 3706.) (Contributed by NM, 4-May-2015.)
 |-  V  =  ( Base `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LVec )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  U  e.  V )   &    |-  ( ph  ->  Z  e.  ( N `  { X ,  U } ) )   &    |-  ( ph  ->  -.  Z  e.  ( N `  { X ,  Y } ) )   =>    |-  ( ph  ->  -.  U  e.  ( N `  { X ,  Y } ) )
 
Theoremhdmaplem1 31240 Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.)
 |-  V  =  ( Base `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  -.  Z  e.  ( ( N `  { X } )  u.  ( N `  { Y }
 ) ) )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  ( N `  { Z }
 )  =/=  ( N ` 
 { X } )
 )
 
Theoremhdmaplem2N 31241 Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.) (New usage is discouraged.)
 |-  V  =  ( Base `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  -.  Z  e.  ( ( N `  { X } )  u.  ( N `  { Y }
 ) ) )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( N `  { Z }
 )  =/=  ( N ` 
 { Y } )
 )
 
Theoremhdmaplem3 31242 Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.)
 |-  V  =  ( Base `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  Z  e.  V )   &    |-  ( ph  ->  -.  Z  e.  ( ( N `  { X } )  u.  ( N `  { Y }
 ) ) )   &    |-  ( ph  ->  Y  e.  V )   &    |- 
 .0.  =  ( 0g `  W )   =>    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )
 
Theoremhdmaplem4 31243 Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.)
 |-  V  =  ( Base `  W )   &    |-  N  =  ( LSpan `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  ( ph  ->  W  e.  LVec )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N `  { Z } )  =/=  ( N `  { X } ) )   &    |-  ( ph  ->  ( N `  { Z } )  =/=  ( N `  { Y } ) )   =>    |-  ( ph  ->  -.  Z  e.  ( ( N `  { X } )  u.  ( N `  { Y }
 ) ) )
 
Theoremmapdh8a 31244* Part of Part (8) in [Baer] p. 48. (Contributed by NM, 5-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { T }
 ) )   &    |-  ( ph  ->  T  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  T } ) )   =>    |-  ( ph  ->  ( I `  <. Y ,  G ,  T >. )  =  ( I `  <. X ,  F ,  T >. ) )
 
Theoremmapdh8aa 31245* Part of Part (8) in [Baer] p. 48. (Contributed by NM, 12-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N ` 
 { Z } )  =/=  ( N `  { T } ) )   &    |-  ( ph  ->  T  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  -.  Y  e.  ( N `
  { Z ,  T } ) )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )   =>    |-  ( ph  ->  ( I `  <. Y ,  G ,  T >. )  =  ( I `  <. Z ,  E ,  T >. ) )
 
Theoremmapdh8ab 31246* Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  T  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z }
 ) )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  Z } ) )   &    |-  ( ph  ->  ( N `  { X } )  =  ( N `  { T } ) )   =>    |-  ( ph  ->  ( I `  <. Y ,  G ,  T >. )  =  ( I `  <. Z ,  E ,  T >. ) )
 
Theoremmapdh8ac 31247* Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  T  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N `  { X } )  =  ( N `  { T }
 ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  w >. )  =  B )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { w }
 ) )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  w } ) )   &    |-  ( ph  ->  ( N `  { w } )  =/=  ( N `  { Z } ) )   &    |-  ( ph  ->  -.  X  e.  ( N `  { w ,  Z } ) )   =>    |-  ( ph  ->  ( I `  <. Y ,  G ,  T >. )  =  ( I `  <. Z ,  E ,  T >. ) )
 
Theoremmapdh8ad 31248* Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Z  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  T  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N `  { X } )  =  ( N `  { T }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z }
 ) )   =>    |-  ( ph  ->  ( I `  <. Y ,  G ,  T >. )  =  ( I `  <. Z ,  E ,  T >. ) )
 
Theoremmapdh8b 31249* Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( J `  { G } ) )   &    |-  ( ph  ->  ( I `  <. Y ,  G ,  w >. )  =  E )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { w } )  =/=  ( N `  { T }
 ) )   &    |-  ( ph  ->  T  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =/=  ( N `  { w } ) )   &    |-  ( ph  ->  X  e.  ( N `  { Y ,  T } ) )   &    |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  w } ) )   =>    |-  ( ph  ->  ( I `  <. w ,  E ,  T >. )  =  ( I `  <. Y ,  G ,  T >. ) )
 
Theoremmapdh8c 31250* Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  w >. )  =  E )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  T  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =/=  ( N `  { T } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { w } )  =/=  ( N `  { T }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { T }
 ) )   &    |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { w }
 ) )   &    |-  ( ph  ->  X  e.  ( N `  { Y ,  T }
 ) )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  w } ) )   =>    |-  ( ph  ->  ( I `  <. w ,  E ,  T >. )  =  ( I `  <. X ,  F ,  T >. ) )
 
Theoremmapdh8d0N 31251* Part of Part (8) in [Baer] p. 48. (Contributed by NM, 10-May-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  T  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =/=  ( N `  { T } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { w } )  =/=  ( N `  { T }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { T }
 ) )   &    |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { w }
 ) )   &    |-  ( ph  ->  -.  X  e.  ( N `
  { Y ,  w } ) )   &    |-  ( ph  ->  X  e.  ( N `  { Y ,  T } ) )   =>    |-  ( ph  ->  ( I `  <. Y ,  G ,  T >. )  =  ( I `  <. X ,  F ,  T >. ) )
 
Theoremmapdh8d 31252* Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .-  =  ( -g `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  C  =  ( (LCDual `  K ) `  W )   &    |-  D  =  ( Base `  C )   &    |-  R  =  ( -g `  C )   &    |-  Q  =  ( 0g
 `  C )   &    |-  J  =  ( LSpan `  C )   &    |-  M  =  ( (mapd `  K ) `  W )   &    |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x )  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `  { ( 2nd `  x ) }
 ) )  =  ( J `  { h } )  /\  ( M `
  ( N `  { ( ( 1st `  ( 1st `  x ) )  .-  ( 2nd `  x ) ) }
 ) )  =  ( J `  { (
 ( 2nd `  ( 1st `  x ) ) R h ) } )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  F  e.  D )   &    |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )   &    |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  T  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( N ` 
 { Y } )  =/=  ( N `  { T } ) )   &    |-  ( ph  ->  w  e.  ( V  \  {  .0.  }
 ) )   &    |-  (