HomeHome Metamath Proof Explorer
Theorem List (p. 321 of 325)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-22378)
  Hilbert Space Explorer  Hilbert Space Explorer
(22379-23901)
  Users' Mathboxes  Users' Mathboxes
(23902-32451)
 

Theorem List for Metamath Proof Explorer - 32001-32100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlclkrlem2h 32001 Lemma for lclkr 32020. Eliminate the  ( L `  ( E 
.+  G ) )  e.  J hypothesis. (Contributed by NM, 16-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  ( L `  E )  =/=  ( L `  G ) )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `
  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2i 32002 Lemma for lclkr 32020. Eliminate the  ( L `  E )  =/=  ( L `  G ) hypothesis. (Contributed by NM, 17-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  } ) )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `
  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2j 32003 Lemma for lclkr 32020. Kernel closure when  Y is zero. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  =  .0.  )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2k 32004 Lemma for lclkr 32020. Kernel closure when  X is zero. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  =  .0.  )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2l 32005 Lemma for lclkr 32020. Eliminate the  X  =/=  .0.,  Y  =/=  .0. hypotheses. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  .(+)  =  ( LSSum `  U )   &    |-  N  =  (
 LSpan `  U )   &    |-  F  =  (LFnl `  U )   &    |-  J  =  (LSHyp `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  B  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   &    |-  ( ph  ->  ( ( E 
 .+  G ) `  B )  =  Q )   &    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { B } )  \/  -.  Y  e.  (  ._|_  `  { B }
 ) ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2m 32006 Lemma for lclkr 32020. Construct a vector  B that makes the sum of functionals zero. Combine with  B  e.  V to shorten overall proof. (Contributed by NM, 17-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   =>    |-  ( ph  ->  ( B  e.  V  /\  ( ( E  .+  G ) `  B )  =  .0.  )
 )
 
Theoremlclkrlem2n 32007 Lemma for lclkr 32020. (Contributed by NM, 12-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  ( ph  ->  ( ( E  .+  G ) `  X )  =  .0.  )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =  .0.  )   =>    |-  ( ph  ->  ( N `  { X ,  Y } )  C_  ( L `  ( E  .+  G ) ) )
 
Theoremlclkrlem2o 32008 Lemma for lclkr 32020. When  B is nonzero, the vectors  X and  Y can't both belong to the hyperplane generated by  B. (Contributed by NM, 17-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   &    |-  ( ph  ->  B  =/=  ( 0g `  U ) )   =>    |-  ( ph  ->  ( -.  X  e.  (  ._|_  `  { B }
 )  \/  -.  Y  e.  (  ._|_  `  { B } ) ) )
 
Theoremlclkrlem2p 32009 Lemma for lclkr 32020. When  B is zero,  X and  Y must colinear, so their orthocomplements must be comparable. (Contributed by NM, 17-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   &    |-  ( ph  ->  B  =  ( 0g `  U ) )   =>    |-  ( ph  ->  ( 
 ._|_  `  { Y }
 )  C_  (  ._|_  ` 
 { X } )
 )
 
Theoremlclkrlem2q 32010 Lemma for lclkr 32020. The sum has a closed kernel when  B is nonzero. (Contributed by NM, 18-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   &    |-  ( ph  ->  B  =/=  ( 0g `  U ) )   =>    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2r 32011 Lemma for lclkr 32020. When  B is zero, i.e. when  X and  Y are colinear, the intersection of the kernels of  E and  G equal the kernel of  G, so the kernels of  G and the sum are comparable. (Contributed by NM, 18-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   &    |-  ( ph  ->  B  =  ( 0g `  U ) )   =>    |-  ( ph  ->  ( L `  G ) 
 C_  ( L `  ( E  .+  G ) ) )
 
Theoremlclkrlem2s 32012 Lemma for lclkr 32020. Thus, the sum has a closed kernel when  B is zero. (Contributed by NM, 18-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  B  =  ( X  .-  ( (
 ( ( E  .+  G ) `  X )  .X.  ( I `  ( ( E  .+  G ) `  Y ) ) )  .x.  Y ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   &    |-  ( ph  ->  B  =  ( 0g `  U ) )   =>    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2t 32013 Lemma for lclkr 32020. We eliminate all hypotheses with  B here. (Contributed by NM, 18-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =/= 
 .0.  )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2u 32014 Lemma for lclkr 32020. lclkrlem2t 32013 with  X and  Y swapped. (Contributed by NM, 18-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  X )  =/= 
 .0.  )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2v 32015 Lemma for lclkr 32020. When the hypotheses of lclkrlem2u 32014 and lclkrlem2u 32014 are negated, the functional sum must be zero, so the kernel is the vector space. We make use of the law of excluded middle, dochexmid 31955, which requires the orthomodular law dihoml4 31864 (Lemma 3.3 of [Holland95] p. 214). (Contributed by NM, 16-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  X )  =  .0.  )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =  .0.  )   =>    |-  ( ph  ->  ( L `  ( E  .+  G ) )  =  V )
 
Theoremlclkrlem2w 32016 Lemma for lclkr 32020. This is the same as lclkrlem2u 32014 and lclkrlem2u 32014 with the inequality hypotheses negated. When the sum of two functionals is zero at each generating vector, the kernel is the vector space and therefore closed. (Contributed by NM, 16-Jan-2015.)
 |-  V  =  ( Base `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |- 
 .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  ( invr `  S )   &    |-  .-  =  ( -g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  H  =  (
 LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .(+)  =  (
 LSSum `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X } ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y }
 ) )   &    |-  ( ph  ->  ( ( E  .+  G ) `  X )  =  .0.  )   &    |-  ( ph  ->  ( ( E  .+  G ) `  Y )  =  .0.  )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2x 32017 Lemma for lclkr 32020. Eliminate by cases the hypotheses of lclkrlem2u 32014, lclkrlem2u 32014 and lclkrlem2w 32016. (Contributed by NM, 18-Jan-2015.)
 |-  L  =  (LKer `  U )   &    |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  ( L `  E )  =  (  ._|_  `  { X }
 ) )   &    |-  ( ph  ->  ( L `  G )  =  (  ._|_  `  { Y } ) )   =>    |-  ( ph  ->  ( 
 ._|_  `  (  ._|_  `  ( L `  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2y 32018 Lemma for lclkr 32020. Restate the hypotheses for  E and  G to say their kernels are closed, in order to eliminate the generating vectors  X and  Y. (Contributed by NM, 18-Jan-2015.)
 |-  L  =  (LKer `  U )   &    |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `  E ) ) )  =  ( L `
  E ) )   &    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `
  G ) ) )  =  ( L `
  G ) )   =>    |-  ( ph  ->  (  ._|_  `  (  ._|_  `  ( L `
  ( E  .+  G ) ) ) )  =  ( L `
  ( E  .+  G ) ) )
 
Theoremlclkrlem2 32019* The set of functionals having closed kernels is closed under vector (functional) addition. Lemmas lclkrlem2a 31994 through lclkrlem2y 32018 are used for the proof. Here we express lclkrlem2y 32018 in terms of membership in the set  C of functionals with closed kernels. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  .+  =  ( +g  `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  E  e.  C )   &    |-  ( ph  ->  G  e.  C )   =>    |-  ( ph  ->  ( E  .+  G )  e.  C )
 
Theoremlclkr 32020* The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of [Holland95] p. 218, line 20, stating "The fM that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  S  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  C  e.  S )
 
Theoremlcfls1lem 32021* Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.)
 |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  Q ) }   =>    |-  ( G  e.  C  <->  ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G ) ) )  =  ( L `
  G )  /\  (  ._|_  `  ( L `  G ) )  C_  Q ) )
 
Theoremlcfls1N 32022* Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.)
 |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  Q ) }   &    |-  ( ph  ->  G  e.  F )   =>    |-  ( ph  ->  ( G  e.  C  <->  ( (  ._|_  `  (  ._|_  `  ( L `
  G ) ) )  =  ( L `
  G )  /\  (  ._|_  `  ( L `  G ) )  C_  Q ) ) )
 
Theoremlcfls1c 32023* Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015.)
 |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  Q ) }   &    |-  D  =  {
 f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f ) }   =>    |-  ( G  e.  C  <->  ( G  e.  D  /\  (  ._|_  `  ( L `  G ) ) 
 C_  Q ) )
 
Theoremlclkrslem1 32024* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  Q is closed under scalar product. (Contributed by NM, 27-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  D )   &    |-  C  =  { f  e.  F  |  ( ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  Q  e.  S )   &    |-  ( ph  ->  G  e.  C )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( X  .x.  G )  e.  C )
 
Theoremlclkrslem2 32025* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  Q is closed under scalar product. (Contributed by NM, 28-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  R  =  (Scalar `  U )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .s `  D )   &    |-  C  =  { f  e.  F  |  ( ( 
 ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `
  f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  Q  e.  S )   &    |-  ( ph  ->  G  e.  C )   &    |- 
 .+  =  ( +g  `  D )   &    |-  ( ph  ->  E  e.  C )   =>    |-  ( ph  ->  ( E  .+  G )  e.  C )
 
Theoremlclkrs 32026* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  R is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr 32020 proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr 32020 a special case of this? (Contributed by NM, 29-Jan-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f
 ) )  C_  R ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  R  e.  S )   =>    |-  ( ph  ->  C  e.  T )
 
Theoremlclkrs2 32027* The set of functionals with closed kernels and majorizing the orthocomplement of a given subspace  Q is a subspace of the dual space containing functionals with closed kernels. Note that  R is the value given by mapdval 32115. (Contributed by NM, 12-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  S  =  ( LSubSp `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  T  =  ( LSubSp `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }   &    |-  R  =  { g  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `  g ) ) )  =  ( L `  g )  /\  (  ._|_  `  ( L `  g
 ) )  C_  Q ) }   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  Q  e.  S )   =>    |-  ( ph  ->  ( R  e.  T  /\  R  C_  C ) )
 
TheoremlcfrvalsnN 32028* Reconstruction from the dual space span of a singleton. (Contributed by NM, 19-Feb-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  N  =  ( LSpan `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  F )   &    |-  Q  =  U_ f  e.  R  (  ._|_  `  ( L `  f ) )   &    |-  R  =  ( N `  { G } )   =>    |-  ( ph  ->  Q  =  (  ._|_  `  ( L `  G ) ) )
 
Theoremlcfrlem1 32029 Lemma for lcfr 32072. Note that  X is z in Mario's notes. (Contributed by NM, 27-Feb-2015.)
 |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  (
 invr `  S )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .x.  =  ( .s `  D )   &    |-  .-  =  ( -g `  D )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( G `  X )  =/=  .0.  )   &    |-  H  =  ( E  .-  (
 ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )   =>    |-  ( ph  ->  ( H `  X )  =  .0.  )
 
Theoremlcfrlem2 32030 Lemma for lcfr 32072. (Contributed by NM, 27-Feb-2015.)
 |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  (
 invr `  S )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .x.  =  ( .s `  D )   &    |-  .-  =  ( -g `  D )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( G `  X )  =/=  .0.  )   &    |-  H  =  ( E  .-  (
 ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )   &    |-  L  =  (LKer `  U )   =>    |-  ( ph  ->  (
 ( L `  E )  i^i  ( L `  G ) )  C_  ( L `  H ) )
 
Theoremlcfrlem3 32031 Lemma for lcfr 32072. (Contributed by NM, 27-Feb-2015.)
 |-  V  =  ( Base `  U )   &    |-  S  =  (Scalar `  U )   &    |-  .X.  =  ( .r `  S )   &    |-  .0.  =  ( 0g `  S )   &    |-  I  =  (
 invr `  S )   &    |-  F  =  (LFnl `  U )   &    |-  D  =  (LDual `  U )   &    |-  .x.  =  ( .s `  D )   &    |-  .-  =  ( -g `  D )   &    |-  ( ph  ->  U  e.  LVec )   &    |-  ( ph  ->  E  e.  F )   &    |-  ( ph  ->  G  e.  F )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  ( G `  X )  =/=  .0.  )   &    |-  H  =  ( E  .-  (
 ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )   &    |-  L  =  (LKer `  U )   =>    |-  ( ph  ->  X  e.  ( L `  H ) )
 
Theoremlcfrlem4 32032* Lemma for lcfr 32072. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  ( ph  ->  X  e.  E )   =>    |-  ( ph  ->  X  e.  V )
 
Theoremlcfrlem5 32033* Lemma for lcfr 32072. The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  Q is closed under scalar product. TODO: share hypotheses with others. Use more consistent variable names here or elsewhere when possible. (Contributed by NM, 5-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  S  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  R  e.  S )   &    |-  Q  =  U_ f  e.  R  (  ._|_  `  ( L `  f ) )   &    |-  ( ph  ->  X  e.  Q )   &    |-  C  =  (Scalar `  U )   &    |-  B  =  ( Base `  C )   &    |-  .x.  =  ( .s `  U )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  ( A  .x.  X )  e.  Q )
 
Theoremlcfrlem6 32034* Lemma for lcfr 32072. Closure of vector sum with colinear vectors. TODO: Move down  N definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   &    |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem7 32035* Lemma for lcfr 32072. Closure of vector sum when one vector is zero. TODO: share hypotheses with others. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  .+  =  ( +g  `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( LSubSp `  D )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  G  e.  Q )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  E )   &    |- 
 .0.  =  ( 0g `  U )   &    |-  ( ph  ->  Y  =  .0.  )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem8 32036* Lemma for lcf1o 32038 and lcfr 32072. (Contributed by NM, 21-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( J `  X )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { X }
 ) v  =  ( w  .+  ( k 
 .x.  X ) ) ) ) )
 
Theoremlcfrlem9 32037* Lemma for lcf1o 32038. (This part has undesirable $d's on  J and  ph that we remove in lcf1o 32038.) TODO: ugly proof; maybe have better subtheorems or abbreviate some  iota_
k expansions with  J `  z? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  J : ( V  \  {  .0.  } ) -1-1-onto-> ( C 
 \  { Q }
 ) )
 
Theoremlcf1o 32038* Define a function  J that provides a bijection from nonzero vectors  V to nonzero functionals with closed kernels  C. (Contributed by NM, 22-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   =>    |-  ( ph  ->  J : ( V  \  {  .0.  } ) -1-1-onto-> ( C 
 \  { Q }
 ) )
 
Theoremlcfrlem10 32039* Lemma for lcfr 32072. (Contributed by NM, 23-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( J `  X )  e.  F )
 
Theoremlcfrlem11 32040* Lemma for lcfr 32072. (Contributed by NM, 23-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( L `  ( J `  X ) )  =  (  ._|_  `  { X } ) )
 
Theoremlcfrlem12N 32041* Lemma for lcfr 32072. (Contributed by NM, 23-Feb-2015.) (New usage is discouraged.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  B  =  ( 0g `  S )   &    |-  ( ph  ->  Y  e.  (  ._|_  `  { X }
 ) )   =>    |-  ( ph  ->  (
 ( J `  X ) `  Y )  =  B )
 
Theoremlcfrlem13 32042* Lemma for lcfr 32072. (Contributed by NM, 8-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( J `  X )  e.  ( C  \  { Q } ) )
 
Theoremlcfrlem14 32043* Lemma for lcfr 32072. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   &    |-  N  =  (
 LSpan `  U )   =>    |-  ( ph  ->  ( 
 ._|_  `  ( L `  ( J `  X ) ) )  =  ( N `  { X } ) )
 
Theoremlcfrlem15 32044* Lemma for lcfr 32072. (Contributed by NM, 9-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  X  e.  (  ._|_  `  ( L `  ( J `  X ) ) ) )
 
Theoremlcfrlem16 32045* Lemma for lcfr 32072. (Contributed by NM, 8-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  R  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  U )   &    |-  F  =  (LFnl `  U )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  Q  =  ( 0g `  D )   &    |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `
  f ) ) )  =  ( L `
  f ) }   &    |-  J  =  ( x  e.  ( V  \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )   &    |-  P  =  ( LSubSp `  D )   &    |-  ( ph  ->  G  e.  P )   &    |-  ( ph  ->  G  C_  C )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  ( E  \  {  .0.  }
 ) )   =>    |-  ( ph  ->  ( J `  X )  e.  G )
 
Theoremlcfrlem17 32046 Lemma for lcfr 32072. Condition needed more than once. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  ( V  \  {  .0.  } ) )
 
Theoremlcfrlem18 32047 Lemma for lcfr 32072. (Contributed by NM, 24-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  (  ._|_  `  { X ,  Y } )  =  ( (  ._|_  `  { X } )  i^i  (  ._|_  ` 
 { Y } )
 ) )
 
Theoremlcfrlem19 32048 Lemma for lcfr 32072. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  ( -.  X  e.  (  ._|_  ` 
 { ( X  .+  Y ) } )  \/  -.  Y  e.  (  ._|_  `  { ( X 
 .+  Y ) }
 ) ) )
 
Theoremlcfrlem20 32049 Lemma for lcfr 32072. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  ( ph  ->  -.  X  e.  (  ._|_  ` 
 { ( X  .+  Y ) } )
 )   =>    |-  ( ph  ->  (
 ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )  e.  A )
 
Theoremlcfrlem21 32050 Lemma for lcfr 32072. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   =>    |-  ( ph  ->  (
 ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )  e.  A )
 
Theoremlcfrlem22 32051 Lemma for lcfr 32072. (Contributed by NM, 24-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   =>    |-  ( ph  ->  B  e.  A )
 
Theoremlcfrlem23 32052 Lemma for lcfr 32072. TODO: this proof was built from other proof pieces that may change  N `  { X ,  Y } into subspace sum and back unnecessarily, or similar things. (Contributed by NM, 1-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .(+)  =  ( LSSum `  U )   =>    |-  ( ph  ->  (
 (  ._|_  `  { X ,  Y } )  .(+)  B )  =  (  ._|_  `  { ( X  .+  Y ) }
 ) )
 
Theoremlcfrlem24 32053* Lemma for lcfr 32072. (Contributed by NM, 24-Feb-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   =>    |-  ( ph  ->  (  ._|_  `  { X ,  Y } )  =  ( ( L `  ( J `  X ) )  i^i  ( L `  ( J `  Y ) ) ) )
 
Theoremlcfrlem25 32054* Lemma for lcfr 32072. Special case of lcfrlem35 32064 when  ( ( J `
 Y ) `  I ) is zero. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =  Q )   &    |-  ( ph  ->  I  =/=  .0.  )   =>    |-  ( ph  ->  ( 
 ._|_  `  { ( X 
 .+  Y ) }
 )  =  ( L `
  ( J `  Y ) ) )
 
Theoremlcfrlem26 32055* Lemma for lcfr 32072. Special case of lcfrlem36 32065 when  ( ( J `
 Y ) `  I ) is zero. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =  Q )   &    |-  ( ph  ->  I  =/=  .0.  )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  (  ._|_  `  ( L `  ( J `  Y ) ) ) )
 
Theoremlcfrlem27 32056* Lemma for lcfr 32072. Special case of lcfrlem37 32066 when  ( ( J `
 Y ) `  I ) is zero. (Contributed by NM, 11-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =  Q )   &    |-  ( ph  ->  I  =/=  .0.  )   &    |-  ( ph  ->  G  e.  ( LSubSp `
  D ) )   &    |-  ( ph  ->  G  C_  { f  e.  (LFnl `  U )  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) } )   &    |-  E  =  U_ g  e.  G  (  ._|_  `  ( L `  g ) )   &    |-  ( ph  ->  X  e.  E )   &    |-  ( ph  ->  Y  e.  E )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  E )
 
Theoremlcfrlem28 32057* Lemma for lcfr 32072. TODO: This can be a hypothesis since the zero version of  ( J `  Y ) `  I needs it. (Contributed by NM, 9-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   =>    |-  ( ph  ->  I  =/=  .0.  )
 
Theoremlcfrlem29 32058* Lemma for lcfr 32072. (Contributed by NM, 9-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   =>    |-  ( ph  ->  ( ( F `  (
 ( J `  Y ) `  I ) ) ( .r `  S ) ( ( J `
  X ) `  I ) )  e.  R )
 
Theoremlcfrlem30 32059* Lemma for lcfr 32072. (Contributed by NM, 6-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   =>    |-  ( ph  ->  C  e.  (LFnl `  U )
 )
 
Theoremlcfrlem31 32060* Lemma for lcfr 32072. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   &    |-  ( ph  ->  ( ( J `  X ) `  I )  =/= 
 Q )   &    |-  ( ph  ->  C  =  ( 0g `  D ) )   =>    |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y }
 ) )
 
Theoremlcfrlem32 32061* Lemma for lcfr 32072. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   &    |-  ( ph  ->  ( ( J `  X ) `  I )  =/= 
 Q )   =>    |-  ( ph  ->  C  =/=  ( 0g `  D ) )
 
Theoremlcfrlem33 32062* Lemma for lcfr 32072. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   &    |-  ( ph  ->  ( ( J `  X ) `  I )  =  Q )   =>    |-  ( ph  ->  C  =/=  ( 0g `  D ) )
 
Theoremlcfrlem34 32063* Lemma for lcfr 32072. (Contributed by NM, 10-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   =>    |-  ( ph  ->  C  =/=  ( 0g `  D ) )
 
Theoremlcfrlem35 32064* Lemma for lcfr 32072. (Contributed by NM, 2-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V  \  {  .0.  }
 ) )   &    |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y }
 ) )   &    |-  B  =  ( ( N `  { X ,  Y } )  i^i  (  ._|_  `  { ( X  .+  Y ) }
 ) )   &    |-  .x.  =  ( .s `  U )   &    |-  S  =  (Scalar `  U )   &    |-  Q  =  ( 0g `  S )   &    |-  R  =  ( Base `  S )   &    |-  J  =  ( x  e.  ( V 
 \  {  .0.  }
 )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
 k  .x.  x )
 ) ) ) )   &    |-  ( ph  ->  I  e.  B )   &    |-  L  =  (LKer `  U )   &    |-  D  =  (LDual `  U )   &    |-  ( ph  ->  ( ( J `  Y ) `  I )  =/= 
 Q )   &    |-  F  =  (
 invr `  S )   &    |-  .-  =  ( -g `  D )   &    |-  C  =  ( ( J `  X )  .-  ( ( ( F `
  ( ( J `
  Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
 ) ) ( .s
 `  D ) ( J `  Y ) ) )   =>    |-  ( ph  ->  (  ._|_  `  { ( X 
 .+  Y ) }
 )  =  ( L `
  C ) )
 
Theoremlcfrlem36 32065* Lemma for lcfr 32072. (Contributed by NM, 6-Mar-2015.)
 |-  H  =  ( LHyp `  K )   &    |-  ._|_  =  ( ( ocH `  K ) `  W )   &    |-  U  =  ( ( DVecH `  K ) `  W )   &    |-  V  =  ( Base `  U )   &    |-  .+  =  ( +g  `  U )   &    |-  .0.  =  ( 0g `  U )   &    |-  N  =  ( LSpan `  U )   &    |-  A  =  (LSAtoms `  U )   &    |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H )
 )   &    |-  ( ph  ->  X  e.  ( V  \  {  .0.  } ) )   &    |-  ( ph  ->  Y  e.  ( V