HomeHome Metamath Proof Explorer
Theorem List (p. 34 of 328)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21514)
  Hilbert Space Explorer  Hilbert Space Explorer
(21515-23037)
  Users' Mathboxes  Users' Mathboxes
(23038-32776)
 

Theorem List for Metamath Proof Explorer - 3301-3400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdifeq2 3301 Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B ) )
 
Theoremdifeq12 3302 Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  \  C )  =  ( B  \  D ) )
 
Theoremdifeq1i 3303 Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  A  =  B   =>    |-  ( A  \  C )  =  ( B  \  C )
 
Theoremdifeq2i 3304 Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  A  =  B   =>    |-  ( C  \  A )  =  ( C  \  B )
 
Theoremdifeq12i 3305 Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  \  C )  =  ( B  \  D )
 
Theoremdifeq1d 3306 Deduction adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  \  C )  =  ( B  \  C ) )
 
Theoremdifeq2d 3307 Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  \  A )  =  ( C  \  B ) )
 
Theoremdifeq12d 3308 Equality deduction for class difference. (Contributed by FL, 29-May-2014.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  \  C )  =  ( B  \  D ) )
 
Theoremdifeqri 3309* Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( x  e.  A  /\  -.  x  e.  B )  <->  x  e.  C )   =>    |-  ( A  \  B )  =  C
 
Theoremnfdif 3310 Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A 
 \  B )
 
Theoremeldifi 3311 Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  e.  ( B  \  C )  ->  A  e.  B )
 
Theoremeldifn 3312 Implication of membership in a class difference. (Contributed by NM, 3-May-1994.)
 |-  ( A  e.  ( B  \  C )  ->  -.  A  e.  C )
 
Theoremelndif 3313 A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.)
 |-  ( A  e.  B  ->  -.  A  e.  ( C  \  B ) )
 
Theoremneldif 3314 Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994.)
 |-  ( ( A  e.  B  /\  -.  A  e.  ( B  \  C ) )  ->  A  e.  C )
 
Theoremdifdif 3315 Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
 |-  ( A  \  ( B  \  A ) )  =  A
 
Theoremdifss 3316 Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  \  B )  C_  A
 
Theoremdifssd 3317 A difference of two classes is contained in the minuend. Deduction form of difss 3316. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  ( A  \  B )  C_  A )
 
Theoremdifss2 3318 If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
 |-  ( A  C_  ( B  \  C )  ->  A  C_  B )
 
Theoremdifss2d 3319 If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 3318. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  ( B  \  C ) )   =>    |-  ( ph  ->  A  C_  B )
 
Theoremssdifss 3320 Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
 |-  ( A  C_  B  ->  ( A  \  C )  C_  B )
 
Theoremddif 3321 Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
 |-  ( _V  \  ( _V  \  A ) )  =  A
 
Theoremssconb 3322 Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.)
 |-  ( ( A  C_  C  /\  B  C_  C )  ->  ( A  C_  ( C  \  B )  <->  B  C_  ( C  \  A ) ) )
 
Theoremsscon 3323 Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.)
 |-  ( A  C_  B  ->  ( C  \  B )  C_  ( C  \  A ) )
 
Theoremssdif 3324 Difference law for subsets. (Contributed by NM, 28-May-1998.)
 |-  ( A  C_  B  ->  ( A  \  C )  C_  ( B  \  C ) )
 
Theoremssdifd 3325 If  A is contained in  B, then  ( A 
\  C ) is contained in  ( B  \  C ). Deduction form of ssdif 3324. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( A  \  C )  C_  ( B  \  C ) )
 
Theoremsscond 3326 If  A is contained in  B, then  ( C 
\  B ) is contained in  ( C  \  A ). Deduction form of sscon 3323. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( C  \  B )  C_  ( C  \  A ) )
 
Theoremssdifssd 3327 If  A is contained in  B, then  ( A 
\  C ) is also contained in  B. Deduction form of ssdifss 3320. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( A  \  C )  C_  B )
 
Theoremssdif2d 3328 If  A is contained in  B and  C is contained in  D, then  ( A  \  D ) is contained in  ( B  \  C ). Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  C 
 C_  D )   =>    |-  ( ph  ->  ( A  \  D ) 
 C_  ( B  \  C ) )
 
Theoremelun 3329 Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.)
 |-  ( A  e.  ( B  u.  C )  <->  ( A  e.  B  \/  A  e.  C ) )
 
Theoremuneqri 3330* Inference from membership to union. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( x  e.  A  \/  x  e.  B )  <->  x  e.  C )   =>    |-  ( A  u.  B )  =  C
 
Theoremunidm 3331 Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  u.  A )  =  A
 
Theoremuncom 3332 Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  u.  B )  =  ( B  u.  A )
 
Theoremequncom 3333 If a class equals the union of two other classes, then it equals the union of those two classes commuted. equncom 3333 was automatically derived from equncomVD 28960 using the tools program translatewithout_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.)
 |-  ( A  =  ( B  u.  C )  <->  A  =  ( C  u.  B ) )
 
Theoremequncomi 3334 Inference form of equncom 3333. equncomi 3334 was automatically derived from equncomiVD 28961 using the tools program translatewithout_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.)
 |-  A  =  ( B  u.  C )   =>    |-  A  =  ( C  u.  B )
 
Theoremuneq1 3335 Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
 
Theoremuneq2 3336 Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  ->  ( C  u.  A )  =  ( C  u.  B ) )
 
Theoremuneq12 3337 Equality theorem for union of two classes. (Contributed by NM, 29-Mar-1998.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  u.  C )  =  ( B  u.  D ) )
 
Theoremuneq1i 3338 Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.)
 |-  A  =  B   =>    |-  ( A  u.  C )  =  ( B  u.  C )
 
Theoremuneq2i 3339 Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.)
 |-  A  =  B   =>    |-  ( C  u.  A )  =  ( C  u.  B )
 
Theoremuneq12i 3340 Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  u.  C )  =  ( B  u.  D )
 
Theoremuneq1d 3341 Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  u.  C )  =  ( B  u.  C ) )
 
Theoremuneq2d 3342 Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  u.  A )  =  ( C  u.  B ) )
 
Theoremuneq12d 3343 Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  u.  C )  =  ( B  u.  D ) )
 
Theoremnfun 3344 Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  u.  B )
 
Theoremunass 3345 Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  u.  B )  u.  C )  =  ( A  u.  ( B  u.  C ) )
 
Theoremun12 3346 A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
 |-  ( A  u.  ( B  u.  C ) )  =  ( B  u.  ( A  u.  C ) )
 
Theoremun23 3347 A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  u.  B )  u.  C )  =  ( ( A  u.  C )  u.  B )
 
Theoremun4 3348 A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
 |-  ( ( A  u.  B )  u.  ( C  u.  D ) )  =  ( ( A  u.  C )  u.  ( B  u.  D ) )
 
Theoremunundi 3349 Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
 |-  ( A  u.  ( B  u.  C ) )  =  ( ( A  u.  B )  u.  ( A  u.  C ) )
 
Theoremunundir 3350 Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
 |-  ( ( A  u.  B )  u.  C )  =  ( ( A  u.  C )  u.  ( B  u.  C ) )
 
Theoremssun1 3351 Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
 |-  A  C_  ( A  u.  B )
 
Theoremssun2 3352 Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
 |-  A  C_  ( B  u.  A )
 
Theoremssun3 3353 Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  C_  B  ->  A  C_  ( B  u.  C ) )
 
Theoremssun4 3354 Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.)
 |-  ( A  C_  B  ->  A  C_  ( C  u.  B ) )
 
Theoremelun1 3355 Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  e.  B  ->  A  e.  ( B  u.  C ) )
 
Theoremelun2 3356 Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
 |-  ( A  e.  B  ->  A  e.  ( C  u.  B ) )
 
Theoremunss1 3357 Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  B  ->  ( A  u.  C )  C_  ( B  u.  C ) )
 
Theoremssequn1 3358 A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( A  C_  B  <->  ( A  u.  B )  =  B )
 
Theoremunss2 3359 Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
 |-  ( A  C_  B  ->  ( C  u.  A )  C_  ( C  u.  B ) )
 
Theoremunss12 3360 Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.)
 |-  ( ( A  C_  B  /\  C  C_  D )  ->  ( A  u.  C )  C_  ( B  u.  D ) )
 
Theoremssequn2 3361 A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
 |-  ( A  C_  B  <->  ( B  u.  A )  =  B )
 
Theoremunss 3362 The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.)
 |-  ( ( A  C_  C  /\  B  C_  C ) 
 <->  ( A  u.  B )  C_  C )
 
Theoremunssi 3363 An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  A  C_  C   &    |-  B  C_  C   =>    |-  ( A  u.  B )  C_  C
 
Theoremunssd 3364 A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  ->  A  C_  C )   &    |-  ( ph  ->  B 
 C_  C )   =>    |-  ( ph  ->  ( A  u.  B ) 
 C_  C )
 
Theoremunssad 3365 If  ( A  u.  B ) is contained in  C, so is  A. One-way deduction form of unss 3362. Partial converse of unssd 3364. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  ( A  u.  B )  C_  C )   =>    |-  ( ph  ->  A  C_  C )
 
Theoremunssbd 3366 If  ( A  u.  B ) is contained in  C, so is  B. One-way deduction form of unss 3362. Partial converse of unssd 3364. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  ( A  u.  B )  C_  C )   =>    |-  ( ph  ->  B  C_  C )
 
Theoremssun 3367 A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
 |-  ( ( A  C_  B  \/  A  C_  C )  ->  A  C_  ( B  u.  C ) )
 
Theoremrexun 3368 Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
 |-  ( E. x  e.  ( A  u.  B ) ph  <->  ( E. x  e.  A  ph  \/  E. x  e.  B  ph ) )
 
Theoremralunb 3369 Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( A. x  e.  ( A  u.  B ) ph  <->  ( A. x  e.  A  ph  /\  A. x  e.  B  ph ) )
 
Theoremralun 3370 Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( A. x  e.  A  ph  /\  A. x  e.  B  ph )  ->  A. x  e.  ( A  u.  B ) ph )
 
Theoremelin 3371 Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  e.  ( B  i^i  C )  <->  ( A  e.  B  /\  A  e.  C ) )
 
Theoremelin2 3372 Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
 |-  X  =  ( B  i^i  C )   =>    |-  ( A  e.  X 
 <->  ( A  e.  B  /\  A  e.  C ) )
 
Theoremelin3 3373 Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
 |-  X  =  ( ( B  i^i  C )  i^i  D )   =>    |-  ( A  e.  X 
 <->  ( A  e.  B  /\  A  e.  C  /\  A  e.  D )
 )
 
Theoremincom 3374 Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  i^i  B )  =  ( B  i^i  A )
 
Theoremineqri 3375* Inference from membership to intersection. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  C )   =>    |-  ( A  i^i  B )  =  C
 
Theoremineq1 3376 Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.)
 |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C ) )
 
Theoremineq2 3377 Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
 |-  ( A  =  B  ->  ( C  i^i  A )  =  ( C  i^i  B ) )
 
Theoremineq12 3378 Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  i^i  C )  =  ( B  i^i  D ) )
 
Theoremineq1i 3379 Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
 |-  A  =  B   =>    |-  ( A  i^i  C )  =  ( B  i^i  C )
 
Theoremineq2i 3380 Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
 |-  A  =  B   =>    |-  ( C  i^i  A )  =  ( C  i^i  B )
 
Theoremineq12i 3381 Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  i^i  C )  =  ( B  i^i  D )
 
Theoremineq1d 3382 Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  i^i  C )  =  ( B  i^i  C ) )
 
Theoremineq2d 3383 Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  i^i  A )  =  ( C  i^i  B ) )
 
Theoremineq12d 3384 Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  i^i  C )  =  ( B  i^i  D ) )
 
Theoremineqan12d 3385 Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ps  ->  C  =  D )   =>    |-  ( ( ph  /\ 
 ps )  ->  ( A  i^i  C )  =  ( B  i^i  D ) )
 
Theoremdfss1 3386 A frequently-used variant of subclass definition df-ss 3179. (Contributed by NM, 10-Jan-2015.)
 |-  ( A  C_  B  <->  ( B  i^i  A )  =  A )
 
Theoremdfss5 3387 Another definition of subclasshood. Similar to df-ss 3179, dfss 3180, and dfss1 3386. (Contributed by David Moews, 1-May-2017.)
 |-  ( A  C_  B  <->  A  =  ( B  i^i  A ) )
 
Theoremnfin 3388 Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  i^i  B )
 
Theoremcsbing 3389 Distribute proper substitution through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.)
 |-  ( A  e.  B  -> 
 [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )
 
Theoremrabbi2dva 3390* Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( x  e.  B  <->  ps ) )   =>    |-  ( ph  ->  ( A  i^i  B )  =  { x  e.  A  |  ps }
 )
 
Theoreminidm 3391 Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  i^i  A )  =  A
 
Theoreminass 3392 Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( A  i^i  ( B  i^i  C ) )
 
Theoremin12 3393 A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.)
 |-  ( A  i^i  ( B  i^i  C ) )  =  ( B  i^i  ( A  i^i  C ) )
 
Theoremin32 3394 A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i 
 B )
 
Theoremin13 3395 A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
 |-  ( A  i^i  ( B  i^i  C ) )  =  ( C  i^i  ( B  i^i  A ) )
 
Theoremin31 3396 A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  B )  i^i 
 A )
 
Theoreminrot 3397 Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( C  i^i  A )  i^i 
 B )
 
Theoremin4 3398 Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.)
 |-  ( ( A  i^i  B )  i^i  ( C  i^i  D ) )  =  ( ( A  i^i  C )  i^i  ( B  i^i  D ) )
 
Theoreminindi 3399 Intersection distributes over itself. (Contributed by NM, 6-May-1994.)
 |-  ( A  i^i  ( B  i^i  C ) )  =  ( ( A  i^i  B )  i^i  ( A  i^i  C ) )
 
Theoreminindir 3400 Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.)
 |-  ( ( A  i^i  B )  i^i  C )  =  ( ( A  i^i  C )  i^i  ( B  i^i  C ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32776
  Copyright terms: Public domain < Previous  Next >