HomeHome Metamath Proof Explorer
Theorem List (p. 4 of 328)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21514)
  Hilbert Space Explorer  Hilbert Space Explorer
(21515-23037)
  Users' Mathboxes  Users' Mathboxes
(23038-32776)
 

Theorem List for Metamath Proof Explorer - 301-400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxchbinx 301 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
 |-  ( ph  <->  -.  ps )   &    |-  ( ps 
 <->  ch )   =>    |-  ( ph  <->  -.  ch )
 
Theoremxchbinxr 302 Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
 |-  ( ph  <->  -.  ps )   &    |-  ( ch 
 <->  ps )   =>    |-  ( ph  <->  -.  ch )
 
Theoremimbi2i 303 Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  ->  ph )  <->  ( ch  ->  ps ) )
 
Theorembibi2i 304 Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  <->  ph )  <->  ( ch  <->  ps ) )
 
Theorembibi1i 305 Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  <->  ch )  <->  ( ps  <->  ch ) )
 
Theorembibi12i 306 The equivalence of two equivalences. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  <->  ch )  <->  ( ps  <->  th ) )
 
Theoremimbi2d 307 Deduction adding an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  ->  ps )  <->  ( th  ->  ch )
 ) )
 
Theoremimbi1d 308 Deduction adding a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  ->  th )  <->  ( ch  ->  th )
 ) )
 
Theorembibi2d 309 Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( th  <->  ps )  <->  ( th  <->  ch ) ) )
 
Theorembibi1d 310 Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  th ) ) )
 
Theoremimbi12d 311 Deduction joining two equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  ->  th )  <->  ( ch  ->  ta )
 ) )
 
Theorembibi12d 312 Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   &    |-  ( ph  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ( ( ps  <->  th )  <->  ( ch  <->  ta ) ) )
 
Theoremimbi1 313 Theorem *4.84 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  <->  ps )  ->  (
 ( ph  ->  ch )  <->  ( ps  ->  ch )
 ) )
 
Theoremimbi2 314 Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
 |-  ( ( ph  <->  ps )  ->  (
 ( ch  ->  ph )  <->  ( ch  ->  ps )
 ) )
 
Theoremimbi1i 315 Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  ->  ch )  <->  ( ps  ->  ch ) )
 
Theoremimbi12i 316 Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   =>    |-  ( ( ph  ->  ch )  <->  ( ps  ->  th ) )
 
Theorembibi1 317 Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  <->  ps )  ->  (
 ( ph  <->  ch )  <->  ( ps  <->  ch ) ) )
 
Theoremcon2bi 318 Contraposition. Theorem *4.12 of [WhiteheadRussell] p. 117. (Contributed by NM, 15-Apr-1995.) (Proof shortened by Wolf Lammen, 3-Jan-2013.)
 |-  ( ( ph  <->  -.  ps )  <->  ( ps  <->  -.  ph ) )
 
Theoremcon2bid 319 A contraposition deduction. (Contributed by NM, 15-Apr-1995.)
 |-  ( ph  ->  ( ps 
 <->  -.  ch ) )   =>    |-  ( ph  ->  ( ch  <->  -.  ps ) )
 
Theoremcon1bid 320 A contraposition deduction. (Contributed by NM, 9-Oct-1999.)
 |-  ( ph  ->  ( -.  ps  <->  ch ) )   =>    |-  ( ph  ->  ( -.  ch  <->  ps ) )
 
Theoremcon1bii 321 A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.)
 |-  ( -.  ph  <->  ps )   =>    |-  ( -.  ps  <->  ph )
 
Theoremcon2bii 322 A contraposition inference. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  -.  ps )   =>    |-  ( ps  <->  -.  ph )
 
Theoremcon1b 323 Contraposition. Bidirectional version of con1 120. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( -.  ph  ->  ps )  <->  ( -.  ps  -> 
 ph ) )
 
Theoremcon2b 324 Contraposition. Bidirectional version of con2 108. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( ph  ->  -. 
 ps )  <->  ( ps  ->  -.  ph ) )
 
Theorembiimt 325 A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.)
 |-  ( ph  ->  ( ps 
 <->  ( ph  ->  ps )
 ) )
 
Theorempm5.5 326 Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ph  ->  (
 ( ph  ->  ps )  <->  ps ) )
 
Theorema1bi 327 Inference rule introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.)
 |-  ph   =>    |-  ( ps  <->  ( ph  ->  ps ) )
 
Theoremmt2bi 328 A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.)
 |-  ph   =>    |-  ( -.  ps  <->  ( ps  ->  -.  ph ) )
 
Theoremmtt 329 Modus-tollens-like theorem. (Contributed by NM, 7-Apr-2001.) (Proof shortened by Wolf Lammen, 12-Nov-2012.)
 |-  ( -.  ph  ->  ( -.  ps  <->  ( ps  ->  ph ) ) )
 
Theorempm5.501 330 Theorem *5.501 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ph  ->  ( ps 
 <->  ( ph  <->  ps ) ) )
 
Theoremibib 331 Implication in terms of implication and biconditional. (Contributed by NM, 31-Mar-1994.) (Proof shortened by Wolf Lammen, 24-Jan-2013.)
 |-  ( ( ph  ->  ps )  <->  ( ph  ->  (
 ph 
 <->  ps ) ) )
 
Theoremibibr 332 Implication in terms of implication and biconditional. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 21-Dec-2013.)
 |-  ( ( ph  ->  ps )  <->  ( ph  ->  ( ps  <->  ph ) ) )
 
Theoremtbt 333 A wff is equivalent to its equivalence with truth. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ph   =>    |-  ( ps  <->  ( ps  <->  ph ) )
 
Theoremnbn2 334 The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 28-Jan-2013.)
 |-  ( -.  ph  ->  ( -.  ps  <->  ( ph  <->  ps ) ) )
 
Theorembibif 335 Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007.) (Proof shortened by Wolf Lammen, 28-Jan-2013.)
 |-  ( -.  ps  ->  ( ( ph  <->  ps )  <->  -.  ph ) )
 
Theoremnbn 336 The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
 |- 
 -.  ph   =>    |-  ( -.  ps  <->  ( ps  <->  ph ) )
 
Theoremnbn3 337 Transfer falsehood via equivalence. (Contributed by NM, 11-Sep-2006.)
 |-  ph   =>    |-  ( -.  ps  <->  ( ps  <->  -.  ph ) )
 
Theorempm5.21im 338 Two propositions are equivalent if they are both false. Closed form of 2false 339. Equivalent to a bi2 189-like version of the xor-connective. (Contributed by Wolf Lammen, 13-May-2013.)
 |-  ( -.  ph  ->  ( -.  ps  ->  ( ph 
 <->  ps ) ) )
 
Theorem2false 339 Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.)
 |- 
 -.  ph   &    |-  -.  ps   =>    |-  ( ph  <->  ps )
 
Theorem2falsed 340 Two falsehoods are equivalent (deduction rule). (Contributed by NM, 11-Oct-2013.)
 |-  ( ph  ->  -.  ps )   &    |-  ( ph  ->  -.  ch )   =>    |-  ( ph  ->  ( ps 
 <->  ch ) )
 
Theorempm5.21ni 341 Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  ps )   =>    |-  ( -.  ps  ->  (
 ph 
 <->  ch ) )
 
Theorempm5.21nii 342 Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  ps )   &    |-  ( ps  ->  (
 ph 
 <->  ch ) )   =>    |-  ( ph  <->  ch )
 
Theorempm5.21ndd 343 Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.)
 |-  ( ph  ->  ( ch  ->  ps ) )   &    |-  ( ph  ->  ( th  ->  ps ) )   &    |-  ( ph  ->  ( ps  ->  ( ch  <->  th ) ) )   =>    |-  ( ph  ->  ( ch  <->  th ) )
 
Theorembija 344 Combine antecedents into a single bi-conditional. This inference, reminiscent of ja 153, is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im 229 and pm5.21im 338). (Contributed by Wolf Lammen, 13-May-2013.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( -.  ph  ->  ( -.  ps 
 ->  ch ) )   =>    |-  ( ( ph  <->  ps )  ->  ch )
 
Theorempm5.18 345 Theorem *5.18 of [WhiteheadRussell] p. 124. This theorem says that logical equivalence is the same as negated "exclusive-or." (Contributed by NM, 28-Jun-2002.) (Proof shortened by Andrew Salmon, 20-Jun-2011.) (Proof shortened by Wolf Lammen, 15-Oct-2013.)
 |-  ( ( ph  <->  ps )  <->  -.  ( ph  <->  -.  ps ) )
 
Theoremxor3 346 Two ways to express "exclusive or." (Contributed by NM, 1-Jan-2006.)
 |-  ( -.  ( ph  <->  ps ) 
 <->  ( ph  <->  -.  ps ) )
 
Theoremnbbn 347 Move negation outside of biconditional. Compare Theorem *5.18 of [WhiteheadRussell] p. 124. (Contributed by NM, 27-Jun-2002.) (Proof shortened by Wolf Lammen, 20-Sep-2013.)
 |-  ( ( -.  ph  <->  ps ) 
 <->  -.  ( ph  <->  ps ) )
 
Theorembiass 348 Associative law for the biconditional. An axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805. Interestingly, this law was not included in Principia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by NM, 8-Jan-2005.) (Proof shortened by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 21-Sep-2013.)
 |-  ( ( ( ph  <->  ps ) 
 <->  ch )  <->  ( ph  <->  ( ps  <->  ch ) ) )
 
Theorempm5.19 349 Theorem *5.19 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.)
 |- 
 -.  ( ph  <->  -.  ph )
 
Theorembi2.04 350 Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( ph  ->  ( ps  ->  ch )
 ) 
 <->  ( ps  ->  ( ph  ->  ch ) ) )
 
Theorempm5.4 351 Antecedent absorption implication. Theorem *5.4 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( ph  ->  (
 ph  ->  ps ) )  <->  ( ph  ->  ps ) )
 
Theoremimdi 352 Distributive law for implication. Compare Theorem *5.41 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( ph  ->  ( ps  ->  ch )
 ) 
 <->  ( ( ph  ->  ps )  ->  ( ph  ->  ch ) ) )
 
Theorempm5.41 353 Theorem *5.41 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 12-Oct-2012.)
 |-  ( ( ( ph  ->  ps )  ->  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  ->  ch )
 ) )
 
Theorempm4.8 354 Theorem *4.8 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  ->  -.  ph )  <->  -.  ph )
 
Theorempm4.81 355 Theorem *4.81 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( -.  ph  -> 
 ph )  <->  ph )
 
Theoremimim21b 356 Simplify an implication between two implications when the antecedent of the first is a consequence of the antecedent of the second. The reverse form is useful in producing the successor step in induction proofs. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Wolf Lammen, 14-Sep-2013.)
 |-  ( ( ps  ->  ph )  ->  ( (
 ( ph  ->  ch )  ->  ( ps  ->  th )
 ) 
 <->  ( ps  ->  ( ch  ->  th ) ) ) )
 
1.2.6  Logical disjunction and conjunction

Here we define disjunction (logical 'or')  \/ (df-or 359) and conjunction (logical 'and')  /\ (df-an 360). We also define various rules for simplifying and applying them, e.g., olc 373, orc 374, and orcom 376.

 
Syntaxwo 357 Extend wff definition to include disjunction ('or').
 wff  ( ph  \/  ps )
 
Syntaxwa 358 Extend wff definition to include conjunction ('and').
 wff  ( ph  /\  ps )
 
Definitiondf-or 359 Define disjunction (logical 'or'). Definition of [Margaris] p. 49. When the left operand, right operand, or both are true, the result is true; when both sides are false, the result is false. For example, it is true that  ( 2  =  3  \/  4  =  4 ) (ex-or 20824). After we define the constant true  T. (df-tru 1310) and the constant false  F. (df-fal 1311), we will be able to prove these truth table values:  ( (  T.  \/  T.  )  <->  T.  ) (truortru 1330), 
( (  T.  \/  F.  )  <->  T.  ) (truorfal 1331), 
( (  F.  \/  T.  )  <->  T.  ) (falortru 1332), and  ( (  F.  \/  F.  )  <->  F.  ) (falorfal 1333).

This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute  ( -.  ph  ->  ps ) for  ( ph  \/  ps ), we end up with an instance of previously proved theorem biid 227. This is the justification for the definition, along with the fact that it introduces a new symbol  \/. Contrast with  /\ (df-an 360), 
-> (wi 4),  -/\ (df-nan 1288), and  \/_ (df-xor 1296) . (Contributed by NM, 5-Aug-1993.)

 |-  ( ( ph  \/  ps )  <->  ( -.  ph  ->  ps ) )
 
Definitiondf-an 360 Define conjunction (logical 'and'). Definition of [Margaris] p. 49. When both the left and right operand are true, the result is true; when either is false, the result is false. For example, it is true that  ( 2  =  2  /\  3  =  3 ). After we define the constant true  T. (df-tru 1310) and the constant false  F. (df-fal 1311), we will be able to prove these truth table values:  ( (  T.  /\  T.  )  <->  T.  ) (truantru 1326), 
( (  T.  /\  F.  )  <->  F.  ) (truanfal 1327),  ( (  F.  /\  T.  )  <->  F.  ) (falantru 1328), and  ( (  F.  /\  F.  )  <->  F.  ) (falanfal 1329).

Contrast with  \/ (df-or 359), 
-> (wi 4),  -/\ (df-nan 1288), and  \/_ (df-xor 1296) . (Contributed by NM, 5-Aug-1993.)

 |-  ( ( ph  /\  ps ) 
 <->  -.  ( ph  ->  -. 
 ps ) )
 
Theorempm4.64 361 Theorem *4.64 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( -.  ph  ->  ps )  <->  ( ph  \/  ps ) )
 
Theorempm2.53 362 Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  \/  ps )  ->  ( -.  ph 
 ->  ps ) )
 
Theorempm2.54 363 Theorem *2.54 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( -.  ph  ->  ps )  ->  ( ph  \/  ps ) )
 
Theoremori 364 Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.)
 |-  ( ph  \/  ps )   =>    |-  ( -.  ph  ->  ps )
 
Theoremorri 365 Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.)
 |-  ( -.  ph  ->  ps )   =>    |-  ( ph  \/  ps )
 
Theoremord 366 Deduce implication from disjunction. (Contributed by NM, 18-May-1994.)
 |-  ( ph  ->  ( ps  \/  ch ) )   =>    |-  ( ph  ->  ( -.  ps 
 ->  ch ) )
 
Theoremorrd 367 Deduce implication from disjunction. (Contributed by NM, 27-Nov-1995.)
 |-  ( ph  ->  ( -.  ps  ->  ch )
 )   =>    |-  ( ph  ->  ( ps  \/  ch ) )
 
Theoremjaoi 368 Inference disjoining the antecedents of two implications. (Contributed by NM, 5-Apr-1994.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  ps )   =>    |-  ( ( ph  \/  ch )  ->  ps )
 
Theoremjaod 369 Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( th  ->  ch ) )   =>    |-  ( ph  ->  (
 ( ps  \/  th )  ->  ch ) )
 
Theoremmpjaod 370 Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( th  ->  ch ) )   &    |-  ( ph  ->  ( ps  \/  th )
 )   =>    |-  ( ph  ->  ch )
 
Theoremorel1 371 Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
 |-  ( -.  ph  ->  ( ( ph  \/  ps )  ->  ps ) )
 
Theoremorel2 372 Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.)
 |-  ( -.  ph  ->  ( ( ps  \/  ph )  ->  ps ) )
 
Theoremolc 373 Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.)
 |-  ( ph  ->  ( ps  \/  ph ) )
 
Theoremorc 374 Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.)
 |-  ( ph  ->  ( ph  \/  ps ) )
 
Theorempm1.4 375 Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  \/  ps )  ->  ( ps  \/  ph ) )
 
Theoremorcom 376 Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.)
 |-  ( ( ph  \/  ps )  <->  ( ps  \/  ph ) )
 
Theoremorcomd 377 Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.)
 |-  ( ph  ->  ( ps  \/  ch ) )   =>    |-  ( ph  ->  ( ch  \/  ps ) )
 
Theoremorcoms 378 Commutation of disjuncts in antecedent. (Contributed by NM, 2-Dec-2012.)
 |-  ( ( ph  \/  ps )  ->  ch )   =>    |-  (
 ( ps  \/  ph )  ->  ch )
 
Theoremorci 379 Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.)
 |-  ph   =>    |-  ( ph  \/  ps )
 
Theoremolci 380 Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.)
 |-  ph   =>    |-  ( ps  \/  ph )
 
Theoremorcd 381 Deduction introducing a disjunct. A translation of natural deduction rule  \/ IR ( \/ insertion right), see natded 20806. (Contributed by NM, 20-Sep-2007.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ps  \/  ch ) )
 
Theoremolcd 382 Deduction introducing a disjunct. A translation of natural deduction rule  \/ IL ( \/ insertion left), see natded 20806. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ch  \/  ps ) )
 
Theoremorcs 383 Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 15) -type inference in a proof. (Contributed by NM, 21-Jun-1994.)
 |-  ( ( ph  \/  ps )  ->  ch )   =>    |-  ( ph  ->  ch )
 
Theoremolcs 384 Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
 |-  ( ( ph  \/  ps )  ->  ch )   =>    |-  ( ps  ->  ch )
 
Theorempm2.07 385 Theorem *2.07 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.)
 |-  ( ph  ->  ( ph  \/  ph ) )
 
Theorempm2.45 386 Theorem *2.45 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
 |-  ( -.  ( ph  \/  ps )  ->  -.  ph )
 
Theorempm2.46 387 Theorem *2.46 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
 |-  ( -.  ( ph  \/  ps )  ->  -.  ps )
 
Theorempm2.47 388 Theorem *2.47 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( -.  ( ph  \/  ps )  ->  ( -.  ph  \/  ps )
 )
 
Theorempm2.48 389 Theorem *2.48 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( -.  ( ph  \/  ps )  ->  ( ph  \/  -.  ps )
 )
 
Theorempm2.49 390 Theorem *2.49 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( -.  ( ph  \/  ps )  ->  ( -.  ph  \/  -.  ps ) )
 
Theorempm2.67-2 391 Slight generalization of Theorem *2.67 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  \/  ch )  ->  ps )  ->  ( ph  ->  ps )
 )
 
Theorempm2.67 392 Theorem *2.67 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  \/  ps )  ->  ps )  ->  ( ph  ->  ps )
 )
 
Theorempm2.25 393 Theorem *2.25 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
 |-  ( ph  \/  (
 ( ph  \/  ps )  ->  ps ) )
 
Theorembiorf 394 A wff is equivalent to its disjunction with falsehood. Theorem *4.74 of [WhiteheadRussell] p. 121. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
 |-  ( -.  ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
 
Theorembiortn 395 A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.)
 |-  ( ph  ->  ( ps 
 <->  ( -.  ph  \/  ps ) ) )
 
Theorembiorfi 396 A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.)
 |- 
 -.  ph   =>    |-  ( ps  <->  ( ps  \/  ph ) )
 
Theorempm2.621 397 Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  ->  ps )  ->  ( ( ph  \/  ps )  ->  ps ) )
 
Theorempm2.62 398 Theorem *2.62 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Dec-2013.)
 |-  ( ( ph  \/  ps )  ->  ( ( ph  ->  ps )  ->  ps )
 )
 
Theorempm2.68 399 Theorem *2.68 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  ->  ps )  ->  ps )  ->  ( ph  \/  ps ) )
 
Theoremdfor2 400 Logical 'or' expressed in terms of implication only. Theorem *5.25 of [WhiteheadRussell] p. 124. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Wolf Lammen, 20-Oct-2012.)
 |-  ( ( ph  \/  ps )  <->  ( ( ph  ->  ps )  ->  ps )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32776
  Copyright terms: Public domain < Previous  Next >