HomeHome Metamath Proof Explorer
Theorem List (p. 55 of 327)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-22411)
  Hilbert Space Explorer  Hilbert Space Explorer
(22412-23934)
  Users' Mathboxes  Users' Mathboxes
(23935-32663)
 

Theorem List for Metamath Proof Explorer - 5401-5500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcnviin 5401* The converse of an intersection is the intersection of the converse. (Contributed by FL, 15-Oct-2012.)
 |-  ( A  =/=  (/)  ->  `' |^|_ x  e.  A  B  =  |^|_
 x  e.  A  `' B )
 
Theoremcnvpo 5402 The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.)
 |-  ( R  Po  A  <->  `' R  Po  A )
 
Theoremcnvso 5403 The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005.)
 |-  ( R  Or  A  <->  `' R  Or  A )
 
Theoremcoexg 5404 The composition of two sets is a set. (Contributed by NM, 19-Mar-1998.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  o.  B )  e.  _V )
 
Theoremcoex 5405 The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  o.  B )  e.  _V
 
Theoremxpco 5406 Composition of two cross products. (Contributed by Thierry Arnoux, 17-Nov-2017.)
 |-  ( B  =/=  (/)  ->  (
 ( B  X.  C )  o.  ( A  X.  B ) )  =  ( A  X.  C ) )
 
Theoremxpcoid 5407 Composition of two square cross products. (Contributed by Thierry Arnoux, 14-Jan-2018.)
 |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  =  ( A  X.  A )
 
2.4.8  Definite description binder (inverted iota)
 
Syntaxcio 5408 Extend class notation with Russell's definition description binder (inverted iota).
 class  ( iota x ph )
 
Theoremiotajust 5409* Soundness justification theorem for df-iota 5410. (Contributed by Andrew Salmon, 29-Jun-2011.)
 |- 
 U. { y  |  { x  |  ph }  =  { y } }  =  U. { z  |  { x  |  ph }  =  { z } }
 
Definitiondf-iota 5410* Define Russell's definition description binder, which can be read as "the unique  x such that  ph," where  ph ordinarily contains  x as a free variable. Our definition is meaningful only when there is exactly one  x such that  ph is true (see iotaval 5421); otherwise, it evaluates to the empty set (see iotanul 5425). Russell used the inverted iota symbol 
iota to represent the binder.

Sometimes proofs need to expand an iota-based definition. That is, given "X = the x for which ... x ... x ..." holds, the proof needs to get to "... X ... X ...". A general strategy to do this is to use riotacl2 6555 (or iotacl 5433 for unbounded iota), as demonstrated in the proof of supub 7454. This can be easier than applying riotasbc 6557 or a version that applies an explicit substitution, because substituting an iota into its own property always has a bound variable clash which must be first renamed or else guarded with NF.

(Contributed by Andrew Salmon, 30-Jun-2011.)

 |-  ( iota x ph )  =  U. { y  |  { x  |  ph }  =  { y } }
 
Theoremdfiota2 5411* Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.)
 |-  ( iota x ph )  =  U. { y  |  A. x ( ph  <->  x  =  y ) }
 
Theoremnfiota1 5412 Bound-variable hypothesis builder for the  iota class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x ( iota x ph )
 
Theoremnfiotad 5413 Deduction version of nfiota 5414. (Contributed by NM, 18-Feb-2013.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/_ x ( iota y ps ) )
 
Theoremnfiota 5414 Bound-variable hypothesis builder for the  iota class. (Contributed by NM, 23-Aug-2011.)
 |- 
 F/ x ph   =>    |-  F/_ x ( iota y ph )
 
Theoremcbviota 5415 Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  F/ y ph   &    |-  F/ x ps   =>    |-  ( iota x ph )  =  ( iota y ps )
 
Theoremcbviotav 5416* Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( iota x ph )  =  ( iota
 y ps )
 
Theoremsb8iota 5417 Variable substitution in description binder. Compare sb8eu 2298. (Contributed by NM, 18-Mar-2013.)
 |- 
 F/ y ph   =>    |-  ( iota x ph )  =  ( iota y [ y  /  x ] ph )
 
Theoremiotaeq 5418 Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
 |-  ( A. x  x  =  y  ->  ( iota x ph )  =  ( iota y ph ) )
 
Theoremiotabi 5419 Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
 |-  ( A. x (
 ph 
 <->  ps )  ->  ( iota x ph )  =  ( iota x ps ) )
 
Theoremuniabio 5420* Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x (
 ph 
 <->  x  =  y ) 
 ->  U. { x  |  ph
 }  =  y )
 
Theoremiotaval 5421* Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x (
 ph 
 <->  x  =  y ) 
 ->  ( iota x ph )  =  y )
 
Theoremiotauni 5422 Equivalence between two different forms of  iota. (Contributed by Andrew Salmon, 12-Jul-2011.)
 |-  ( E! x ph  ->  ( iota x ph )  =  U. { x  |  ph } )
 
Theoremiotaint 5423 Equivalence between two different forms of  iota. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( E! x ph  ->  ( iota x ph )  =  |^| { x  |  ph } )
 
Theoremiota1 5424 Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
 |-  ( E! x ph  ->  ( ph  <->  ( iota x ph )  =  x ) )
 
Theoremiotanul 5425 Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one  x that satisfies  ph. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |-  ( -.  E! x ph 
 ->  ( iota x ph )  =  (/) )
 
Theoremiotassuni 5426 The  iota class is a subset of the union of all elements satisfying  ph. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( iota x ph )  C_  U. { x  |  ph }
 
Theoremiotaex 5427 Theorem 8.23 in [Quine] p. 58. This theorem proves the existence of the  iota class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011.)
 |-  ( iota x ph )  e.  _V
 
Theoremiota4 5428 Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
 |-  ( E! x ph  -> 
 [. ( iota x ph )  /  x ]. ph )
 
Theoremiota4an 5429 Theorem *14.23 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
 |-  ( E! x (
 ph  /\  ps )  -> 
 [. ( iota x ( ph  /\  ps )
 )  /  x ]. ph )
 
Theoremiota5 5430* A method for computing iota. (Contributed by NM, 17-Sep-2013.)
 |-  ( ( ph  /\  A  e.  V )  ->  ( ps 
 <->  x  =  A ) )   =>    |-  ( ( ph  /\  A  e.  V )  ->  ( iota x ps )  =  A )
 
Theoremiotabidv 5431* Formula-building deduction rule for iota. (Contributed by NM, 20-Aug-2011.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 iota x ps )  =  ( iota x ch ) )
 
Theoremiotabii 5432 Formula-building deduction rule for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  ( ph  <->  ps )   =>    |-  ( iota x ph )  =  ( iota x ps )
 
Theoremiotacl 5433 Membership law for descriptions.

This can useful for expanding an unbounded iota-based definition (see df-iota 5410). If you have a bounded iota-based definition, riotacl2 6555 may be useful.

(Contributed by Andrew Salmon, 1-Aug-2011.)

 |-  ( E! x ph  ->  ( iota x ph )  e.  { x  |  ph } )
 
Theoremiota2df 5434 A condition that allows us to represent "the unique element such that  ph " with a class expression  A. (Contributed by NM, 30-Dec-2014.)
 |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  E! x ps )   &    |-  (
 ( ph  /\  x  =  B )  ->  ( ps 
 <->  ch ) )   &    |-  F/ x ph   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )
 
Theoremiota2d 5435* A condition that allows us to represent "the unique element such that  ph " with a class expression  A. (Contributed by NM, 30-Dec-2014.)
 |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  E! x ps )   &    |-  (
 ( ph  /\  x  =  B )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ch  <->  ( iota x ps )  =  B ) )
 
Theoremiota2 5436* The unique element such that 
ph. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  E! x ph )  ->  ( ps 
 <->  ( iota x ph )  =  A )
 )
 
Theoremsniota 5437 A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
 |-  ( E! x ph  ->  { x  |  ph }  =  { ( iota
 x ph ) } )
 
Theoremdfiota4 5438 The  iota operation using the  if operator. (Contributed by Scott Fenton, 6-Oct-2017.)
 |-  ( iota x ph )  =  if ( E! x ph ,  U. { x  |  ph } ,  (/) )
 
Theoremcsbiotag 5439* Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( iota y ph )  =  ( iota y [. A  /  x ].
 ph ) )
 
2.4.9  Functions
 
Syntaxwfun 5440 Extend the definition of a wff to include the function predicate. (Read:  A is a function.)
 wff  Fun  A
 
Syntaxwfn 5441 Extend the definition of a wff to include the function predicate with a domain. (Read:  A is a function on  B.)
 wff  A  Fn  B
 
Syntaxwf 5442 Extend the definition of a wff to include the function predicate with domain and codomain. (Read: 
F maps  A into  B.)
 wff  F : A --> B
 
Syntaxwf1 5443 Extend the definition of a wff to include one-to-one functions. (Read:  F maps  A one-to-one into  B.) The notation ("1-1" above the arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27.
 wff  F : A -1-1-> B
 
Syntaxwfo 5444 Extend the definition of a wff to include onto functions. (Read:  F maps  A onto  B.) The notation ("onto" below the arrow) is from Definition 6.15(4) of [TakeutiZaring] p. 27.
 wff  F : A -onto-> B
 
Syntaxwf1o 5445 Extend the definition of a wff to include one-to-one onto functions. (Read:  F maps  A one-to-one onto  B.) The notation ("1-1" above the arrow and "onto" below the arrow) is from Definition 6.15(6) of [TakeutiZaring] p. 27.
 wff  F : A -1-1-onto-> B
 
Syntaxcfv 5446 Extend the definition of a class to include the value of a function. (Read: The value of  F at  A, or " F of  A.")
 class  ( F `  A )
 
Syntaxwiso 5447 Extend the definition of a wff to include the isomorphism property. (Read:  H is an  R,  S isomorphism of  A onto  B.)
 wff  H  Isom  R ,  S  ( A ,  B )
 
Definitiondf-fun 5448 Define predicate that determines if some class  A is a function. Definition 10.1 of [Quine] p. 65. For example, the expression  Fun  cos is true once we define cosine (df-cos 12663). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 4258 with the maps-to notation (see df-mpt 4260 and df-mpt2 6078). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 5449), a function with a given domain and codomain (df-f 5450), a one-to-one function (df-f1 5451), an onto function (df-fo 5452), or a one-to-one onto function (df-f1o 5453). For alternate definitions, see dffun2 5456, dffun3 5457, dffun4 5458, dffun5 5459, dffun6 5461, dffun7 5471, dffun8 5472, and dffun9 5473. (Contributed by NM, 1-Aug-1994.)
 |-  ( Fun  A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  )
 )
 
Definitiondf-fn 5449 Define a function with domain. Definition 6.15(1) of [TakeutiZaring] p. 27. For alternate definitions, see dffn2 5584, dffn3 5590, dffn4 5651, and dffn5 5764. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
 
Definitiondf-f 5450 Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. For alternate definitions, see dff2 5873, dff3 5874, and dff4 5875. (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  ran  F  C_  B ) )
 
Definitiondf-f1 5451 Define a one-to-one function. For equivalent definitions see dff12 5630 and dff13 5996. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow). (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -1-1-> B  <-> 
 ( F : A --> B  /\  Fun  `' F ) )
 
Definitiondf-fo 5452 Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). For alternate definitions, see dffo2 5649, dffo3 5876, dffo4 5877, and dffo5 5878. (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -onto-> B 
 <->  ( F  Fn  A  /\  ran  F  =  B ) )
 
Definitiondf-f1o 5453 Define a one-to-one onto function. For equivalent definitions see dff1o2 5671, dff1o3 5672, dff1o4 5674, and dff1o5 5675. Compare Definition 6.15(6) of [TakeutiZaring] p. 27. We use their notation ("1-1" above the arrow and "onto" below the arrow). (Contributed by NM, 1-Aug-1994.)
 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
 
Definitiondf-fv 5454* Define the value of a function,  ( F `  A
), also known as function application. For example,  ( cos `  0
)  =  1 (we prove this in cos0 12741 after we define cosine in df-cos 12663). Typically, function  F is defined using maps-to notation (see df-mpt 4260 and df-mpt2 6078), but this is not required. For example,  F  =  { <. 2 ,  6 >. ,  <. 3 ,  9
>. }  ->  ( F `  3 )  =  9 (ex-fv 21741). Note that df-ov 6076 will define two-argument functions using ordered pairs as  ( A F B )  =  ( F `  <. A ,  B >. ). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 5747 and fvprc 5714). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar  F ( A ) notation for a function's value at  A, i.e. " F of  A," but without context-dependent notational ambiguity. Alternate definitions are dffv2 5788, dffv3 5716, fv2 5715, and fv3 5736 (the latter two previously required  A to be a set.) Restricted equivalents that require  F to be a function are shown in funfv 5782 and funfv2 5783. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 5762. (Contributed by NM, 1-Aug-1994.) Revised to use  iota. Original version is now theorem dffv4 5717. (Revised by Scott Fenton, 6-Oct-2017.)
 |-  ( F `  A )  =  ( iota x A F x )
 
Definitiondf-isom 5455* Define the isomorphism predicate. We read this as " H is an  R,  S isomorphism of  A onto  B." Normally,  R and  S are ordering relations on  A and  B respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that  R and  S are subscripts. (Contributed by NM, 4-Mar-1997.)
 |-  ( H  Isom  R ,  S  ( A ,  B ) 
 <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
 
Theoremdffun2 5456* Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z )
 ) )
 
Theoremdffun3 5457* Alternate definition of function. (Contributed by NM, 29-Dec-1996.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x E. z A. y ( x A y  ->  y  =  z ) ) )
 
Theoremdffun4 5458* Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <. x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A )  ->  y  =  z )
 ) )
 
Theoremdffun5 5459* Alternate definition of function. (Contributed by NM, 29-Dec-1996.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x E. z A. y ( <. x ,  y >.  e.  A  ->  y  =  z ) ) )
 
Theoremdffun6f 5460* Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   =>    |-  ( Fun  A  <->  ( Rel  A  /\  A. x E* y  x A y ) )
 
Theoremdffun6 5461* Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
 |-  ( Fun  F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
 
Theoremfunmo 5462* A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
 |-  ( Fun  F  ->  E* y  A F y )
 
Theoremfunrel 5463 A function is a relation. (Contributed by NM, 1-Aug-1994.)
 |-  ( Fun  A  ->  Rel 
 A )
 
Theoremfunss 5464 Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
 |-  ( A  C_  B  ->  ( Fun  B  ->  Fun 
 A ) )
 
Theoremfuneq 5465 Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994.)
 |-  ( A  =  B  ->  ( Fun  A  <->  Fun  B ) )
 
Theoremfuneqi 5466 Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  A  =  B   =>    |-  ( Fun  A  <->  Fun 
 B )
 
Theoremfuneqd 5467 Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( Fun  A  <->  Fun  B ) )
 
Theoremnffun 5468 Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
 |-  F/_ x F   =>    |- 
 F/ x Fun  F
 
Theoremfuneu 5469* There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( Fun  F  /\  A F B ) 
 ->  E! y  A F y )
 
Theoremfuneu2 5470* There is exactly one value of a function. (Contributed by NM, 3-Aug-1994.)
 |-  ( ( Fun  F  /\  <. A ,  B >.  e.  F )  ->  E! y <. A ,  y >.  e.  F )
 
Theoremdffun7 5471* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one." However, dffun8 5472 shows that it doesn't matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  x A y ) )
 
Theoremdffun8 5472* Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. Compare dffun7 5471. (Contributed by NM, 4-Nov-2002.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E! y  x A y ) )
 
Theoremdffun9 5473* Alternate definition of a function. (Contributed by NM, 28-Mar-2007.) (Revised by NM, 16-Jun-2017.)
 |-  ( Fun  A  <->  ( Rel  A  /\  A. x  e.  dom  A E* y  e.  ran  A  x A y ) )
 
Theoremfunfn 5474 An equivalence for the function predicate. (Contributed by NM, 13-Aug-2004.)
 |-  ( Fun  A  <->  A  Fn  dom  A )
 
Theoremfuni 5475 The identity relation is a function. Part of Theorem 10.4 of [Quine] p. 65. (Contributed by NM, 30-Apr-1998.)
 |- 
 Fun  _I
 
Theoremnfunv 5476 The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
 |- 
 -.  Fun  _V
 
Theoremfunopg 5477 A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  Fun  <. A ,  B >. )  ->  A  =  B )
 
Theoremfunopab 5478* A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
 |-  ( Fun  { <. x ,  y >.  |  ph }  <->  A. x E* y ph )
 
Theoremfunopabeq 5479* A class of ordered pairs of values is a function. (Contributed by NM, 14-Nov-1995.)
 |- 
 Fun  { <. x ,  y >.  |  y  =  A }
 
Theoremfunopab4 5480* A class of ordered pairs of values in the form used by df-mpt 4260 is a function. (Contributed by NM, 17-Feb-2013.)
 |- 
 Fun  { <. x ,  y >.  |  ( ph  /\  y  =  A ) }
 
Theoremfunmpt 5481 A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013.)
 |- 
 Fun  ( x  e.  A  |->  B )
 
Theoremfunmpt2 5482 Functionality of a class given by a "maps to" notation. (Contributed by FL, 17-Feb-2008.) (Revised by Mario Carneiro, 31-May-2014.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  Fun 
 F
 
Theoremfunco 5483 The composition of two functions is a function. Exercise 29 of [TakeutiZaring] p. 25. (Contributed by NM, 26-Jan-1997.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( Fun  F  /\  Fun  G )  ->  Fun  ( F  o.  G ) )
 
Theoremfunres 5484 A restriction of a function is a function. Compare Exercise 18 of [TakeutiZaring] p. 25. (Contributed by NM, 16-Aug-1994.)
 |-  ( Fun  F  ->  Fun  ( F  |`  A ) )
 
Theoremfunssres 5485 The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
 |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
 
Theoremfun2ssres 5486 Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
 |-  ( ( Fun  F  /\  G  C_  F  /\  A  C_  dom  G )  ->  ( F  |`  A )  =  ( G  |`  A ) )
 
Theoremfunun 5487 The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
 |-  ( ( ( Fun 
 F  /\  Fun  G ) 
 /\  ( dom  F  i^i  dom  G )  =  (/) )  ->  Fun  ( F  u.  G ) )
 
Theoremfuncnvsn 5488 The converse singleton of an ordered pair is a function. This is equivalent to funsn 5491 via cnvsn 5344, but stating it this way allows us to skip the sethood assumptions on  A and  B. (Contributed by NM, 30-Apr-2015.)
 |- 
 Fun  `' { <. A ,  B >. }
 
Theoremfunsng 5489 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  Fun  { <. A ,  B >. } )
 
Theoremfnsng 5490 Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  Fn  { A } )
 
Theoremfunsn 5491 A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 Fun  { <. A ,  B >. }
 
Theoremfunprg 5492 A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
 |-  ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B ) 
 ->  Fun  { <. A ,  C >. ,  <. B ,  D >. } )
 
Theoremfuntpg 5493 A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
 |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )
 
Theoremfunpr 5494 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( A  =/=  B  ->  Fun  { <. A ,  C >. ,  <. B ,  D >. } )
 
Theoremfuntp 5495 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  A  =/=  C  /\  B  =/=  C ) 
 ->  Fun  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } )
 
Theoremfnsn 5496 Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { <. A ,  B >. }  Fn  { A }
 
Theoremfnprg 5497 Function with a domain of two different values. (Contributed by FL, 26-Jun-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B ) 
 ->  { <. A ,  C >. ,  <. B ,  D >. }  Fn  { A ,  B } )
 
Theoremfntpg 5498 Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
 |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  Fn  { X ,  Y ,  Z } )
 
Theoremfntp 5499 A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  A  =/=  C  /\  B  =/=  C ) 
 ->  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  Fn  { A ,  B ,  C }
 )
 
Theoremfun0 5500 The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
 |- 
 Fun  (/)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32663
  Copyright terms: Public domain < Previous  Next >