HomeHome Metamath Proof Explorer
Theorem List (p. 56 of 310)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21328)
  Hilbert Space Explorer  Hilbert Space Explorer
(21329-22851)
  Users' Mathboxes  Users' Mathboxes
(22852-30955)
 

Theorem List for Metamath Proof Explorer - 5501-5600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfnniniseg2 5501* Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F "
 ( _V  \  { B } ) )  =  { x  e.  A  |  ( F `  x )  =/=  B } )
 
Theoremrexsupp 5502* Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
 |-  ( F  Fn  A  ->  ( E. x  e.  ( `' F "
 ( _V  \  { Z } ) ) ph  <->  E. x  e.  A  (
 ( F `  x )  =/=  Z  /\  ph )
 ) )
 
Theoremunpreima 5503 Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( Fun  F  ->  ( `' F " ( A  u.  B ) )  =  ( ( `' F " A )  u.  ( `' F " B ) ) )
 
Theoreminpreima 5504 Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
 |-  ( Fun  F  ->  ( `' F " ( A  i^i  B ) )  =  ( ( `' F " A )  i^i  ( `' F " B ) ) )
 
Theoremdifpreima 5505 Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.)
 |-  ( Fun  F  ->  ( `' F " ( A 
 \  B ) )  =  ( ( `' F " A ) 
 \  ( `' F " B ) ) )
 
Theoremrespreima 5506 The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( Fun  F  ->  ( `' ( F  |`  B )
 " A )  =  ( ( `' F " A )  i^i  B ) )
 
Theoremiinpreima 5507* Preimage of an intersection. (Contributed by FL, 16-Apr-2012.)
 |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  ( `' F " |^|_ x  e.  A  B )  = 
 |^|_ x  e.  A  ( `' F " B ) )
 
Theoremintpreima 5508* Preimage of an intersection. (Contributed by FL, 28-Apr-2012.)
 |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  ( `' F " |^| A )  =  |^|_ x  e.  A  ( `' F " x ) )
 
Theoremfimacnv 5509 The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
 |-  ( F : A --> B  ->  ( `' F " B )  =  A )
 
Theoremsuppss 5510* Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.)
 |-  ( ph  ->  F : A --> B )   &    |-  (
 ( ph  /\  k  e.  ( A  \  W ) )  ->  ( F `
  k )  =  Z )   =>    |-  ( ph  ->  ( `' F " ( _V  \  { Z } )
 )  C_  W )
 
Theoremsuppssr 5511 A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ( `' F " ( _V  \  { Z } ) )  C_  W )   =>    |-  ( ( ph  /\  X  e.  ( A  \  W ) )  ->  ( F `
  X )  =  Z )
 
Theoremfnopfv 5512 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  <. B ,  ( F `  B ) >.  e.  F )
 
Theoremfvelrn 5513 A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F )
 
Theoremfnfvelrn 5514 A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B )  e.  ran  F )
 
Theoremffvelrn 5515 A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.)
 |-  ( ( F : A
 --> B  /\  C  e.  A )  ->  ( F `
  C )  e.  B )
 
Theoremffvelrni 5516 A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
 |-  F : A --> B   =>    |-  ( C  e.  A  ->  ( F `  C )  e.  B )
 
Theoremffvelrnda 5517 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ( ph  /\  C  e.  A ) 
 ->  ( F `  C )  e.  B )
 
Theoremffvelrnd 5518 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  C  e.  A )   =>    |-  ( ph  ->  ( F `  C )  e.  B )
 
Theoremrexrn 5519* Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( F  Fn  A  ->  ( E. x  e.  ran  F ph  <->  E. y  e.  A  ps ) )
 
Theoremralrn 5520* Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( F  Fn  A  ->  ( A. x  e.  ran  F ph  <->  A. y  e.  A  ps ) )
 
Theoremralrnmpt 5521* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e. 
 ran  F ps  <->  A. x  e.  A  ch ) )
 
Theoremrexrnmpt 5522* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( E. y  e. 
 ran  F ps  <->  E. x  e.  A  ch ) )
 
Theoremf0cli 5523 Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.)
 |-  F : A --> B   &    |-  (/)  e.  B   =>    |-  ( F `  C )  e.  B
 
Theoremdff2 5524 Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  F  C_  ( A  X.  B ) ) )
 
Theoremdff3 5525* Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A --> B 
 <->  ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y ) )
 
Theoremdff4 5526* Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A --> B 
 <->  ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  e.  B  x F y ) )
 
Theoremdffo3 5527* An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
 
Theoremdffo4 5528* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
 
Theoremdffo5 5529* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
 
Theoremexfo 5530* A relation equivalent to the existence of an onto mapping. The right-hand  f is not necessarily a function. (Contributed by NM, 20-Mar-2007.)
 |-  ( E. f  f : A -onto-> B  <->  E. f ( A. x  e.  A  E! y  e.  B  x f y  /\  A. x  e.  B  E. y  e.  A  y f x ) )
 
Theoremfoelrn 5531* Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.)
 |-  ( ( F : A -onto-> B  /\  C  e.  B )  ->  E. x  e.  A  C  =  ( F `  x ) )
 
Theoremfoco2 5532 If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.)
 |-  ( ( F : B
 --> C  /\  G : A
 --> B  /\  ( F  o.  G ) : A -onto-> C )  ->  F : B -onto-> C )
 
Theoremfmpt 5533* Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  C )   =>    |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
 
Theoremf1ompt 5534* Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
 |-  F  =  ( x  e.  A  |->  C )   =>    |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C )
 )
 
Theoremfmpti 5535* Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( x  e.  A  ->  C  e.  B )   =>    |-  F : A --> B
 
Theoremfmptd 5536* Domain and co-domain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  e.  C )   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremffnfv 5537* A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremffnfvf 5538 A function maps to a class to which all values belong. This version of ffnfv 5537 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/_ x F   =>    |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfnfvrnss 5539* An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
 |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
 
Theoremfmpt2d 5540* Domain and co-domain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  e.  V )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  ( ( ph  /\  y  e.  A )  ->  ( F `  y )  e.  C )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremfmpt2dOLD 5541* Domain and co-domain of the mapping operation; deduction form. (Contributed by NM, 9-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( x  e.  A  ->  B  e.  V ) )   &    |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ph  ->  ( y  e.  A  ->  ( F `  y )  e.  C ) )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremffvresb 5542* A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  ( Fun  F  ->  ( ( F  |`  A ) : A --> B  <->  A. x  e.  A  ( x  e.  dom  F 
 /\  ( F `  x )  e.  B ) ) )
 
Theoremfmptco 5543* Composition of two functions expressed as ordered-pair class abstractions. If  F has the equation  ( x  +  2 ) and  G the equation  ( 3 * z ) then  ( G  o.  F ) has the equation  ( 3
* ( x  + 
2 ) ). (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   &    |-  (
 y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  T ) )
 
Theoremfmptcof 5544* Version of fmptco 5543 where  ph needn't be distinct from  x. (Contributed by NM, 27-Dec-2014.)
 |-  ( ph  ->  A. x  e.  A  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   &    |-  ( y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  T ) )
 
Theoremfmptcos 5545* Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( ph  ->  A. x  e.  A  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  [_ R  /  y ]_ S ) )
 
Theoremfcompt 5546* Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
 |-  ( ( A : D
 --> E  /\  B : C
 --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
  x ) ) ) )
 
Theoremfcoconst 5547 Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.)
 |-  ( ( F  Fn  X  /\  Y  e.  X )  ->  ( F  o.  ( I  X.  { Y } ) )  =  ( I  X.  {
 ( F `  Y ) } ) )
 
Theoremfsn 5548 A function maps a singleton to a singleton iff it is the singleton of a ordered pair. (Contributed by NM, 10-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } )
 
Theoremfsng 5549 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( F : { A } --> { B } 
 <->  F  =  { <. A ,  B >. } )
 )
 
Theoremfsn2 5550 A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
 |-  A  e.  _V   =>    |-  ( F : { A } --> B  <->  ( ( F `
  A )  e.  B  /\  F  =  { <. A ,  ( F `  A ) >. } ) )
 
Theoremxpsng 5551 The cross product of two singletons. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  { B }
 )  =  { <. A ,  B >. } )
 
Theoremxpsn 5552 The cross product of two singletons. (Contributed by NM, 4-Nov-2006.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( { A }  X.  { B } )  =  { <. A ,  B >. }
 
Theoremdfmpt 5553 Alternate definition for the "maps to" notation df-mpt 3976 (although it requires that  B be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
 |-  B  e.  _V   =>    |-  ( x  e.  A  |->  B )  = 
 U_ x  e.  A  { <. x ,  B >. }
 
Theoremfnasrn 5554 A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   =>    |-  ( x  e.  A  |->  B )  = 
 ran  (  x  e.  A  |->  <. x ,  B >. )
 
Theoremressnop0 5555 If  A is not in  C, then the restriction of a singleton of  <. A ,  B >. to  C is null. (Contributed by Scott Fenton, 15-Apr-2011.)
 |-  ( -.  A  e.  C  ->  ( { <. A ,  B >. }  |`  C )  =  (/) )
 
Theoremfpr 5556 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D } )
 
Theoremfnressn 5557 A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
  B ) >. } )
 
Theoremfunressn 5558 A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |-  ( Fun  F  ->  ( F  |`  { B } )  C_  { <. B ,  ( F `  B ) >. } )
 
Theoremfressnfv 5559 The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F  |`  { B } ) : { B } --> C  <->  ( F `  B )  e.  C ) )
 
Theoremfvconst 5560 The value of a constant function. (Contributed by NM, 30-May-1999.)
 |-  ( ( F : A
 --> { B }  /\  C  e.  A )  ->  ( F `  C )  =  B )
 
Theoremfmptsn 5561* Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
 
Theoremfmptap 5562* Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( R  u.  { A } )  =  S   &    |-  ( x  =  A  ->  C  =  B )   =>    |-  ( ( x  e.  R  |->  C )  u. 
 { <. A ,  B >. } )  =  ( x  e.  S  |->  C )
 
Theoremfvresi 5563 The value of a restricted identity function. (Contributed by NM, 19-May-2004.)
 |-  ( B  e.  A  ->  ( (  _I  |`  A ) `
  B )  =  B )
 
Theoremfvunsn 5564 Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.)
 |-  ( B  =/=  D  ->  ( ( A  u.  {
 <. B ,  C >. } ) `  D )  =  ( A `  D ) )
 
Theoremfvsn 5565 The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( { <. A ,  B >. } `  A )  =  B
 
Theoremfvsng 5566 The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { <. A ,  B >. } `  A )  =  B )
 
Theoremfvsnun1 5567 The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5568. (Contributed by NM, 23-Sep-2007.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )   =>    |-  ( G `  A )  =  B
 
Theoremfvsnun2 5568 The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5567. (Contributed by NM, 23-Sep-2007.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )   =>    |-  ( D  e.  ( C  \  { A }
 )  ->  ( G `  D )  =  ( F `  D ) )
 
Theoremfnsnsplit 5569 Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.)
 |-  ( ( F  Fn  A  /\  X  e.  A )  ->  F  =  ( ( F  |`  ( A 
 \  { X }
 ) )  u.  { <. X ,  ( F `
  X ) >. } ) )
 
Theoremfsnunf 5570 Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( F : S
 --> T  /\  ( X  e.  V  /\  -.  X  e.  S )  /\  Y  e.  T ) 
 ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X }
 ) --> T )
 
Theoremfsnunf2 5571 Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( F :
 ( S  \  { X } ) --> T  /\  X  e.  S  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : S --> T )
 
Theoremfsnunfv 5572 Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( X  e.  V  /\  Y  e.  V  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )
 
Theoremfsnunres 5573 Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( F  Fn  S  /\  -.  X  e.  S )  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  F )
 
Theoremfvpr1 5574 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
 |-  A  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  A )  =  C )
 
Theoremfvpr2 5575 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
 |-  B  e.  _V   &    |-  D  e.  _V   =>    |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  B )  =  D )
 
Theoremfvtp1 5576 The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
 |-  A  e.  _V   &    |-  D  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  A  =/=  C )  ->  ( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A )  =  D )
 
Theoremfvtp2 5577 The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
 |-  B  e.  _V   &    |-  E  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  B  =/=  C )  ->  ( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  B )  =  E )
 
Theoremfvtp3 5578 The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
 |-  C  e.  _V   &    |-  F  e.  _V   =>    |-  ( ( A  =/=  C 
 /\  B  =/=  C )  ->  ( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  C )  =  F )
 
Theoremfvconst2g 5579 The value of a constant function. (Contributed by NM, 20-Aug-2005.)
 |-  ( ( B  e.  D  /\  C  e.  A )  ->  ( ( A  X.  { B }
 ) `  C )  =  B )
 
Theoremfconst2g 5580 A constant function expressed as a cross product. (Contributed by NM, 27-Nov-2007.)
 |-  ( B  e.  C  ->  ( F : A --> { B }  <->  F  =  ( A  X.  { B }
 ) ) )
 
Theoremfvconst2 5581 The value of a constant function. (Contributed by NM, 16-Apr-2005.)
 |-  B  e.  _V   =>    |-  ( C  e.  A  ->  ( ( A  X.  { B }
 ) `  C )  =  B )
 
Theoremfconst2 5582 A constant function expressed as a cross product. (Contributed by NM, 20-Aug-1999.)
 |-  B  e.  _V   =>    |-  ( F : A
 --> { B }  <->  F  =  ( A  X.  { B }
 ) )
 
Theoremfconst5 5583 Two ways to express that a function is constant. (Contributed by NM, 27-Nov-2007.)
 |-  ( ( F  Fn  A  /\  A  =/=  (/) )  ->  ( F  =  ( A  X.  { B }
 ) 
 <-> 
 ran  F  =  { B } ) )
 
Theoremfnsuppres 5584 Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.)
 |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  (
 ( `' F "
 ( _V  \  { Z } ) )  C_  A 
 <->  ( F  |`  B )  =  ( B  X.  { Z } ) ) )
 
Theoremfnsuppeq0 5585 The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  ( ( F  Fn  A  /\  Z  e.  V )  ->  ( ( `' F " ( _V  \  { Z } )
 )  =  (/)  <->  F  =  ( A  X.  { Z }
 ) ) )
 
Theoremfconstfv 5586* A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5582. (Contributed by NM, 27-Aug-2004.)
 |-  ( F : A --> { B }  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B ) )
 
Theoremfconst3 5587 Two ways to express a constant function. (Contributed by NM, 15-Mar-2007.)
 |-  ( F : A --> { B }  <->  ( F  Fn  A  /\  A  C_  ( `' F " { B } ) ) )
 
Theoremfconst4 5588 Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.)
 |-  ( F : A --> { B }  <->  ( F  Fn  A  /\  ( `' F " { B } )  =  A ) )
 
Theoremresfunexg 5589 The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  |`  B )  e.  _V )
 
TheoremresfunexgALT 5590 The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5589 but requires ax-pow 4082. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  |`  B )  e.  _V )
 
Theoremcofunexg 5591 Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  o.  B )  e.  _V )
 
Theoremcofunex2g 5592 Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
 |-  ( ( A  e.  V  /\  Fun  `' B )  ->  ( A  o.  B )  e.  _V )
 
Theoremfnex 5593 If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 5589. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
 
TheoremfnexALT 5594 If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5186. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.)
 |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
 
Theoremfunex 5595 If the domain of a function exists, so the function. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of fnex 5593. (Note: Any resemblance between F.U.N.E.X. and "Have You Any Eggs" is purely a coincidence originated by Swedish chefs.) (Contributed by NM, 11-Nov-1995.)
 |-  ( ( Fun  F  /\  dom  F  e.  B )  ->  F  e.  _V )
 
Theoremopabex 5596* Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.)
 |-  A  e.  _V   &    |-  ( x  e.  A  ->  E* y ph )   =>    |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
 
Theoremmptexg 5597* If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  e.  V  ->  ( x  e.  A  |->  B )  e.  _V )
 
Theoremmptex 5598* If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.)
 |-  A  e.  _V   =>    |-  ( x  e.  A  |->  B )  e. 
 _V
 
Theoremfunrnex 5599 If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 5595. (Contributed by NM, 11-Nov-1995.)
 |-  ( dom  F  e.  B  ->  ( Fun  F  ->  ran  F  e.  _V ) )
 
Theoremzfrep6 5600* A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4038 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 4028. (Contributed by NM, 10-Oct-2003.)
 |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-30955
  Copyright terms: Public domain < Previous  Next >