HomeHome Metamath Proof Explorer
Theorem List (p. 56 of 313)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21423)
  Hilbert Space Explorer  Hilbert Space Explorer
(21424-22946)
  Users' Mathboxes  Users' Mathboxes
(22947-31284)
 

Theorem List for Metamath Proof Explorer - 5501-5600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfvmpt 5501* Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   &    |-  C  e.  _V   =>    |-  ( A  e.  D  ->  ( F `  A )  =  C )
 
Theoremfvmpts 5502* Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  C  |->  B )   =>    |-  ( ( A  e.  C  /\  [_ A  /  x ]_ B  e.  V ) 
 ->  ( F `  A )  =  [_ A  /  x ]_ B )
 
Theoremfvmpt3 5503* Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   &    |-  ( x  e.  D  ->  B  e.  V )   =>    |-  ( A  e.  D  ->  ( F `  A )  =  C )
 
Theoremfvmpt3i 5504* Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   &    |-  B  e.  _V   =>    |-  ( A  e.  D  ->  ( F `  A )  =  C )
 
Theoremfvmptd 5505* Deduction version of fvmpt 5501. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( ph  ->  F  =  ( x  e.  D  |->  B ) )   &    |-  (
 ( ph  /\  x  =  A )  ->  B  =  C )   &    |-  ( ph  ->  A  e.  D )   &    |-  ( ph  ->  C  e.  V )   =>    |-  ( ph  ->  ( F `  A )  =  C )
 
Theoremfvmpt2i 5506* Value of a function given by the "maps to" notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( x  e.  A  ->  ( F `  x )  =  (  _I  `  B ) )
 
Theoremfvmpt2 5507* Value of a function given by the "maps to" notation. (Contributed by FL, 21-Jun-2010.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ( x  e.  A  /\  B  e.  C )  ->  ( F `
  x )  =  B )
 
Theoremfvmptss 5508* If all the values of the mapping are subsets of a class  C, then so is any evaluation of the mapping, even if  D is not in the base set  A. (Contributed by Mario Carneiro, 13-Feb-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C )
 
Theoremfvmptex 5509* Express a function  F whose value  B may not always be a set in terms of another function  G for which sethood is guaranteed. (Note that  (  _I  `  B ) is just shorthand for  if ( B  e.  _V ,  B ,  (/) ), and it is always a set by fvex 5437.) Note also that these functions are not the same; wherever  B
( C ) is not a set,  C is not in the domain of  F (so it evaluates to the empty set), but  C is in the domain of  G, and  G ( C ) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  G  =  ( x  e.  A  |->  (  _I  `  B ) )   =>    |-  ( F `  C )  =  ( G `  C )
 
Theoremfvmptdf 5510* Alternate deduction version of fvmpt 5501, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  (
 ( F `  A )  =  B  ->  ps ) )   &    |-  F/_ x F   &    |-  F/ x ps   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
 
Theoremfvmptdv 5511* Alternate deduction version of fvmpt 5501, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  (
 ( F `  A )  =  B  ->  ps ) )   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
 
Theoremfvmptdv2 5512* Alternate deduction version of fvmpt 5501, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  A  e.  D )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  B  e.  V )   &    |-  ( ( ph  /\  x  =  A )  ->  B  =  C )   =>    |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ( F `  A )  =  C ) )
 
Theoremmpteqb 5513* Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5521. (Contributed by Mario Carneiro, 14-Nov-2014.)
 |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
 )
 
Theoremfvmptt 5514* Closed theorem form of fvmpt 5501. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  ( ( A. x ( x  =  A  ->  B  =  C ) 
 /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V ) )  ->  ( F `  A )  =  C )
 
Theoremfvmptf 5515* Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5499 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x C   &    |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   =>    |-  ( ( A  e.  D  /\  C  e.  V )  ->  ( F `  A )  =  C )
 
Theoremfvmptnf 5516* The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn 5517 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  F/_ x A   &    |-  F/_ x C   &    |-  ( x  =  A  ->  B  =  C )   &    |-  F  =  ( x  e.  D  |->  B )   =>    |-  ( -.  C  e.  _V 
 ->  ( F `  A )  =  (/) )
 
Theoremfvmptn 5517* This somewhat non-intuitive theorem tells us the value of its function is the empty set when the class  C it would otherwise map to is a proper class. This is a technical lemma that can help eliminate redundant sethood antecedents otherwise required by fvmptg 5499. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 9-Sep-2013.)
 |-  ( x  =  D  ->  B  =  C )   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( -.  C  e.  _V  ->  ( F `  D )  =  (/) )
 
Theoremfvmptss2 5518* A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.)
 |-  ( x  =  D  ->  B  =  C )   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( F `  D )  C_  C
 
Theoremfvopab4ndm 5519* Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008.)
 |-  F  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }   =>    |-  ( -.  B  e.  A  ->  ( F `  B )  =  (/) )
 
Theoremfvopab6 5520* Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  F  =  { <. x ,  y >.  |  (
 ph  /\  y  =  B ) }   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ( x  =  A  ->  B  =  C )   =>    |-  ( ( A  e.  D  /\  C  e.  R  /\  ps )  ->  ( F `  A )  =  C )
 
Theoremeqfnfv 5521* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G 
 <-> 
 A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
 
Theoremeqfnfv2 5522* Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G 
 <->  ( A  =  B  /\  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) ) )
 
Theoremeqfnfv3 5523* Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( F  =  G 
 <->  ( B  C_  A  /\  A. x  e.  A  ( x  e.  B  /\  ( F `  x )  =  ( G `  x ) ) ) ) )
 
Theoremeqfnfvd 5524* Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  A )   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )   =>    |-  ( ph  ->  F  =  G )
 
Theoremeqfnfv2f 5525* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 5521 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
 |-  F/_ x F   &    |-  F/_ x G   =>    |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <->  A. x  e.  A  ( F `  x )  =  ( G `  x ) ) )
 
Theoremeqfunfv 5526* Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
 |-  ( ( Fun  F  /\  Fun  G )  ->  ( F  =  G  <->  ( dom  F  =  dom  G 
 /\  A. x  e.  dom  F ( F `  x )  =  ( G `  x ) ) ) )
 
Theoremfvreseq 5527* Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.)
 |-  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  B  C_  A )  ->  (
 ( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
 
Theoremfndmdif 5528* Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  (  F  \  G )  =  { x  e.  A  |  ( F `  x )  =/=  ( G `  x ) } )
 
Theoremfndmdifcom 5529 The difference set between two functions is commutative. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  (  F  \  G )  =  dom  (  G  \  F ) )
 
Theoremfndmdifeq0 5530 The difference set of two functions is empty if and only if the functions are equal. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( dom  (  F  \  G )  =  (/) 
 <->  F  =  G ) )
 
Theoremfndmin 5531* Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  (  F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
 
Theoremfneqeql 5532 Two functions are equal iff their equalizer is the whole domain. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G 
 <-> 
 dom  (  F  i^i  G )  =  A ) )
 
Theoremfneqeql2 5533 Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G 
 <->  A  C_  dom  (  F  i^i  G ) ) )
 
Theoremfnreseql 5534 Two functions are equal on a subset iff their equalizer contains that subset. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  ( ( F  Fn  A  /\  G  Fn  A  /\  X  C_  A )  ->  ( ( F  |`  X )  =  ( G  |`  X )  <->  X  C_  dom  (  F  i^i  G ) ) )
 
Theoremchfnrn 5535* The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
 |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
 
Theoremfunfvop 5536 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 14-Oct-1996.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `  A ) >.  e.  F )
 
Theoremfunfvbrb 5537 Two ways to say that  A is in the domain of  F. (Contributed by Mario Carneiro, 1-May-2014.)
 |-  ( Fun  F  ->  ( A  e.  dom  F  <->  A F ( F `  A ) ) )
 
Theoremfvimacnvi 5538 A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
 |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  ->  ( F `  A )  e.  B )
 
Theoremfvimacnv 5539 The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 5229 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( ( F `
  A )  e.  B  <->  A  e.  ( `' F " B ) ) )
 
Theoremfunimass3 5540 A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5539 would be the special case of  A being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( ( F " A )  C_  B  <->  A  C_  ( `' F " B ) ) )
 
Theoremfunimass5 5541* A subclass of a preimage in terms of function values. (Contributed by NM, 15-May-2007.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( A  C_  ( `' F " B )  <->  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfunconstss 5542* Two ways of specifying that a function is constant on a subdomain. (Contributed by NM, 8-Mar-2007.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( A. x  e.  A  ( F `  x )  =  B  <->  A 
 C_  ( `' F " { B } )
 ) )
 
TheoremfvimacnvALT 5543 Another proof of fvimacnv 5539, based on funimass3 5540. If funimass3 5540 is ever proved directly, as opposed to using funimacnv 5227 pointwise, then the proof of funimacnv 5227 should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006.) (Proof modification is discouraged.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( ( F `
  A )  e.  B  <->  A  e.  ( `' F " B ) ) )
 
Theoremelpreima 5544 Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( F  Fn  A  ->  ( B  e.  ( `' F " C )  <-> 
 ( B  e.  A  /\  ( F `  B )  e.  C )
 ) )
 
Theoremfniniseg 5545 Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
 |-  ( F  Fn  A  ->  ( C  e.  ( `' F " { B } )  <->  ( C  e.  A  /\  ( F `  C )  =  B ) ) )
 
Theoremfncnvima2 5546* Inverse images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F " B )  =  { x  e.  A  |  ( F `  x )  e.  B } )
 
Theoremfniniseg2 5547* Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F " { B } )  =  { x  e.  A  |  ( F `  x )  =  B }
 )
 
Theoremfnniniseg2 5548* Support sets of functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( F  Fn  A  ->  ( `' F "
 ( _V  \  { B } ) )  =  { x  e.  A  |  ( F `  x )  =/=  B } )
 
Theoremrexsupp 5549* Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
 |-  ( F  Fn  A  ->  ( E. x  e.  ( `' F "
 ( _V  \  { Z } ) ) ph  <->  E. x  e.  A  (
 ( F `  x )  =/=  Z  /\  ph )
 ) )
 
Theoremunpreima 5550 Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( Fun  F  ->  ( `' F " ( A  u.  B ) )  =  ( ( `' F " A )  u.  ( `' F " B ) ) )
 
Theoreminpreima 5551 Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
 |-  ( Fun  F  ->  ( `' F " ( A  i^i  B ) )  =  ( ( `' F " A )  i^i  ( `' F " B ) ) )
 
Theoremdifpreima 5552 Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.)
 |-  ( Fun  F  ->  ( `' F " ( A 
 \  B ) )  =  ( ( `' F " A ) 
 \  ( `' F " B ) ) )
 
Theoremrespreima 5553 The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( Fun  F  ->  ( `' ( F  |`  B )
 " A )  =  ( ( `' F " A )  i^i  B ) )
 
Theoremiinpreima 5554* Preimage of an intersection. (Contributed by FL, 16-Apr-2012.)
 |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  ( `' F " |^|_ x  e.  A  B )  = 
 |^|_ x  e.  A  ( `' F " B ) )
 
Theoremintpreima 5555* Preimage of an intersection. (Contributed by FL, 28-Apr-2012.)
 |-  ( ( Fun  F  /\  A  =/=  (/) )  ->  ( `' F " |^| A )  =  |^|_ x  e.  A  ( `' F " x ) )
 
Theoremfimacnv 5556 The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
 |-  ( F : A --> B  ->  ( `' F " B )  =  A )
 
Theoremsuppss 5557* Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.)
 |-  ( ph  ->  F : A --> B )   &    |-  (
 ( ph  /\  k  e.  ( A  \  W ) )  ->  ( F `
  k )  =  Z )   =>    |-  ( ph  ->  ( `' F " ( _V  \  { Z } )
 )  C_  W )
 
Theoremsuppssr 5558 A function is zero outside its support. (Contributed by Mario Carneiro, 19-Dec-2014.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ( `' F " ( _V  \  { Z } ) )  C_  W )   =>    |-  ( ( ph  /\  X  e.  ( A  \  W ) )  ->  ( F `
  X )  =  Z )
 
Theoremfnopfv 5559 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  <. B ,  ( F `  B ) >.  e.  F )
 
Theoremfvelrn 5560 A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
 |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  ( F `  A )  e.  ran  F )
 
Theoremfnfvelrn 5561 A function's value belongs to its range. (Contributed by NM, 15-Oct-1996.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F `  B )  e.  ran  F )
 
Theoremffvelrn 5562 A function's value belongs to its codomain. (Contributed by NM, 12-Aug-1999.)
 |-  ( ( F : A
 --> B  /\  C  e.  A )  ->  ( F `
  C )  e.  B )
 
Theoremffvelrni 5563 A function's value belongs to its codomain. (Contributed by NM, 6-Apr-2005.)
 |-  F : A --> B   =>    |-  ( C  e.  A  ->  ( F `  C )  e.  B )
 
Theoremffvelrnda 5564 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ( ph  /\  C  e.  A ) 
 ->  ( F `  C )  e.  B )
 
Theoremffvelrnd 5565 A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  C  e.  A )   =>    |-  ( ph  ->  ( F `  C )  e.  B )
 
Theoremrexrn 5566* Restricted existential quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( F  Fn  A  ->  ( E. x  e.  ran  F ph  <->  E. y  e.  A  ps ) )
 
Theoremralrn 5567* Restricted universal quantification over the range of a function. (Contributed by Mario Carneiro, 24-Dec-2013.) (Revised by Mario Carneiro, 20-Aug-2014.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( F  Fn  A  ->  ( A. x  e.  ran  F ph  <->  A. y  e.  A  ps ) )
 
Theoremralrnmpt 5568* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e. 
 ran  F ps  <->  A. x  e.  A  ch ) )
 
Theoremrexrnmpt 5569* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( E. y  e. 
 ran  F ps  <->  E. x  e.  A  ch ) )
 
Theoremf0cli 5570 Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.)
 |-  F : A --> B   &    |-  (/)  e.  B   =>    |-  ( F `  C )  e.  B
 
Theoremdff2 5571 Alternate definition of a mapping. (Contributed by NM, 14-Nov-2007.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  F  C_  ( A  X.  B ) ) )
 
Theoremdff3 5572* Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A --> B 
 <->  ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y ) )
 
Theoremdff4 5573* Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A --> B 
 <->  ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  e.  B  x F y ) )
 
Theoremdffo3 5574* An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
 
Theoremdffo4 5575* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  x F y ) )
 
Theoremdffo5 5576* Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
 |-  ( F : A -onto-> B 
 <->  ( F : A --> B  /\  A. y  e.  B  E. x  x F y ) )
 
Theoremexfo 5577* A relation equivalent to the existence of an onto mapping. The right-hand  f is not necessarily a function. (Contributed by NM, 20-Mar-2007.)
 |-  ( E. f  f : A -onto-> B  <->  E. f ( A. x  e.  A  E! y  e.  B  x f y  /\  A. x  e.  B  E. y  e.  A  y f x ) )
 
Theoremfoelrn 5578* Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.)
 |-  ( ( F : A -onto-> B  /\  C  e.  B )  ->  E. x  e.  A  C  =  ( F `  x ) )
 
Theoremfoco2 5579 If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.)
 |-  ( ( F : B
 --> C  /\  G : A
 --> B  /\  ( F  o.  G ) : A -onto-> C )  ->  F : B -onto-> C )
 
Theoremfmpt 5580* Functionality of the mapping operation. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  C )   =>    |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
 
Theoremf1ompt 5581* Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
 |-  F  =  ( x  e.  A  |->  C )   =>    |-  ( F : A -1-1-onto-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  B  E! x  e.  A  y  =  C )
 )
 
Theoremfmpti 5582* Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( x  e.  A  ->  C  e.  B )   =>    |-  F : A --> B
 
Theoremfmptd 5583* Domain and co-domain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  e.  C )   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremffnfv 5584* A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
 |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremffnfvf 5585 A function maps to a class to which all values belong. This version of ffnfv 5584 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/_ x F   =>    |-  ( F : A --> B 
 <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
 
Theoremfnfvrnss 5586* An upper bound for range determined by function values. (Contributed by NM, 8-Oct-2004.)
 |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  ->  ran  F  C_  B )
 
Theoremfmpt2d 5587* Domain and co-domain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  e.  V )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  ( ( ph  /\  y  e.  A )  ->  ( F `  y )  e.  C )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremfmpt2dOLD 5588* Domain and co-domain of the mapping operation; deduction form. (Contributed by NM, 9-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ph  ->  ( x  e.  A  ->  B  e.  V ) )   &    |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ph  ->  ( y  e.  A  ->  ( F `  y )  e.  C ) )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremffvresb 5589* A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  ( Fun  F  ->  ( ( F  |`  A ) : A --> B  <->  A. x  e.  A  ( x  e.  dom  F 
 /\  ( F `  x )  e.  B ) ) )
 
Theoremfmptco 5590* Composition of two functions expressed as ordered-pair class abstractions. If  F has the equation  ( x  +  2 ) and  G the equation  ( 3 * z ) then  ( G  o.  F ) has the equation  ( 3
* ( x  + 
2 ) ). (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   &    |-  (
 y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  T ) )
 
Theoremfmptcof 5591* Version of fmptco 5590 where  ph needn't be distinct from  x. (Contributed by NM, 27-Dec-2014.)
 |-  ( ph  ->  A. x  e.  A  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   &    |-  ( y  =  R  ->  S  =  T )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  T ) )
 
Theoremfmptcos 5592* Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( ph  ->  A. x  e.  A  R  e.  B )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )   &    |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A  |->  [_ R  /  y ]_ S ) )
 
Theoremfcompt 5593* Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
 |-  ( ( A : D
 --> E  /\  B : C
 --> D )  ->  ( A  o.  B )  =  ( x  e.  C  |->  ( A `  ( B `
  x ) ) ) )
 
Theoremfcoconst 5594 Composition with a constant function. (Contributed by Stefan O'Rear, 11-Mar-2015.)
 |-  ( ( F  Fn  X  /\  Y  e.  X )  ->  ( F  o.  ( I  X.  { Y } ) )  =  ( I  X.  {
 ( F `  Y ) } ) )
 
Theoremfsn 5595 A function maps a singleton to a singleton iff it is the singleton of a ordered pair. (Contributed by NM, 10-Dec-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } )
 
Theoremfsng 5596 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( F : { A } --> { B } 
 <->  F  =  { <. A ,  B >. } )
 )
 
Theoremfsn2 5597 A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
 |-  A  e.  _V   =>    |-  ( F : { A } --> B  <->  ( ( F `
  A )  e.  B  /\  F  =  { <. A ,  ( F `  A ) >. } ) )
 
Theoremxpsng 5598 The cross product of two singletons. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  { B }
 )  =  { <. A ,  B >. } )
 
Theoremxpsn 5599 The cross product of two singletons. (Contributed by NM, 4-Nov-2006.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( { A }  X.  { B } )  =  { <. A ,  B >. }
 
Theoremdfmpt 5600 Alternate definition for the "maps to" notation df-mpt 4019 (although it requires that  B be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
 |-  B  e.  _V   =>    |-  ( x  e.  A  |->  B )  = 
 U_ x  e.  A  { <. x ,  B >. }
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31284
  Copyright terms: Public domain < Previous  Next >