HomeHome Metamath Proof Explorer
Theorem List (p. 58 of 323)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21500)
  Hilbert Space Explorer  Hilbert Space Explorer
(21501-23023)
  Users' Mathboxes  Users' Mathboxes
(23024-32227)
 

Theorem List for Metamath Proof Explorer - 5701-5800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxpsng 5701 The cross product of two singletons. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  { B }
 )  =  { <. A ,  B >. } )
 
Theoremxpsn 5702 The cross product of two singletons. (Contributed by NM, 4-Nov-2006.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( { A }  X.  { B } )  =  { <. A ,  B >. }
 
Theoremdfmpt 5703 Alternate definition for the "maps to" notation df-mpt 4081 (although it requires that  B be a set). (Contributed by NM, 24-Aug-2010.) (Revised by Mario Carneiro, 30-Dec-2016.)
 |-  B  e.  _V   =>    |-  ( x  e.  A  |->  B )  = 
 U_ x  e.  A  { <. x ,  B >. }
 
Theoremfnasrn 5704 A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   =>    |-  ( x  e.  A  |->  B )  = 
 ran  ( x  e.  A  |->  <. x ,  B >. )
 
Theoremressnop0 5705 If  A is not in  C, then the restriction of a singleton of  <. A ,  B >. to  C is null. (Contributed by Scott Fenton, 15-Apr-2011.)
 |-  ( -.  A  e.  C  ->  ( { <. A ,  B >. }  |`  C )  =  (/) )
 
Theoremfpr 5706 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( A  =/=  B  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } --> { C ,  D } )
 
Theoremfnressn 5707 A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
  B ) >. } )
 
Theoremfunressn 5708 A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |-  ( Fun  F  ->  ( F  |`  { B } )  C_  { <. B ,  ( F `  B ) >. } )
 
Theoremfressnfv 5709 The value of a function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
 |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F  |`  { B } ) : { B } --> C  <->  ( F `  B )  e.  C ) )
 
Theoremfvconst 5710 The value of a constant function. (Contributed by NM, 30-May-1999.)
 |-  ( ( F : A
 --> { B }  /\  C  e.  A )  ->  ( F `  C )  =  B )
 
Theoremfmptsn 5711* Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. }  =  ( x  e.  { A }  |->  B ) )
 
Theoremfmptap 5712* Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( R  u.  { A } )  =  S   &    |-  ( x  =  A  ->  C  =  B )   =>    |-  ( ( x  e.  R  |->  C )  u. 
 { <. A ,  B >. } )  =  ( x  e.  S  |->  C )
 
Theoremfvresi 5713 The value of a restricted identity function. (Contributed by NM, 19-May-2004.)
 |-  ( B  e.  A  ->  ( (  _I  |`  A ) `
  B )  =  B )
 
Theoremfvunsn 5714 Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.)
 |-  ( B  =/=  D  ->  ( ( A  u.  {
 <. B ,  C >. } ) `  D )  =  ( A `  D ) )
 
Theoremfvsn 5715 The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( { <. A ,  B >. } `  A )  =  B
 
Theoremfvsng 5716 The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { <. A ,  B >. } `  A )  =  B )
 
Theoremfvsnun1 5717 The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5718. (Contributed by NM, 23-Sep-2007.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )   =>    |-  ( G `  A )  =  B
 
Theoremfvsnun2 5718 The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5717. (Contributed by NM, 23-Sep-2007.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )   =>    |-  ( D  e.  ( C  \  { A }
 )  ->  ( G `  D )  =  ( F `  D ) )
 
Theoremfnsnsplit 5719 Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.)
 |-  ( ( F  Fn  A  /\  X  e.  A )  ->  F  =  ( ( F  |`  ( A 
 \  { X }
 ) )  u.  { <. X ,  ( F `
  X ) >. } ) )
 
Theoremfsnunf 5720 Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( F : S
 --> T  /\  ( X  e.  V  /\  -.  X  e.  S )  /\  Y  e.  T ) 
 ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X }
 ) --> T )
 
Theoremfsnunf2 5721 Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( F :
 ( S  \  { X } ) --> T  /\  X  e.  S  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : S --> T )
 
Theoremfsnunfv 5722 Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
 |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )
 
Theoremfsnunres 5723 Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  ( ( F  Fn  S  /\  -.  X  e.  S )  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  F )
 
Theoremfvpr1 5724 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
 |-  A  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  A )  =  C )
 
Theoremfvpr2 5725 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
 |-  B  e.  _V   &    |-  D  e.  _V   =>    |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  B )  =  D )
 
Theoremfvtp1 5726 The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
 |-  A  e.  _V   &    |-  D  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  A  =/=  C )  ->  ( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A )  =  D )
 
Theoremfvtp2 5727 The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
 |-  B  e.  _V   &    |-  E  e.  _V   =>    |-  ( ( A  =/=  B 
 /\  B  =/=  C )  ->  ( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  B )  =  E )
 
Theoremfvtp3 5728 The third value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
 |-  C  e.  _V   &    |-  F  e.  _V   =>    |-  ( ( A  =/=  C 
 /\  B  =/=  C )  ->  ( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  C )  =  F )
 
Theoremfvconst2g 5729 The value of a constant function. (Contributed by NM, 20-Aug-2005.)
 |-  ( ( B  e.  D  /\  C  e.  A )  ->  ( ( A  X.  { B }
 ) `  C )  =  B )
 
Theoremfconst2g 5730 A constant function expressed as a cross product. (Contributed by NM, 27-Nov-2007.)
 |-  ( B  e.  C  ->  ( F : A --> { B }  <->  F  =  ( A  X.  { B }
 ) ) )
 
Theoremfvconst2 5731 The value of a constant function. (Contributed by NM, 16-Apr-2005.)
 |-  B  e.  _V   =>    |-  ( C  e.  A  ->  ( ( A  X.  { B }
 ) `  C )  =  B )
 
Theoremfconst2 5732 A constant function expressed as a cross product. (Contributed by NM, 20-Aug-1999.)
 |-  B  e.  _V   =>    |-  ( F : A
 --> { B }  <->  F  =  ( A  X.  { B }
 ) )
 
Theoremfconst5 5733 Two ways to express that a function is constant. (Contributed by NM, 27-Nov-2007.)
 |-  ( ( F  Fn  A  /\  A  =/=  (/) )  ->  ( F  =  ( A  X.  { B }
 ) 
 <-> 
 ran  F  =  { B } ) )
 
Theoremfnsuppres 5734 Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.)
 |-  ( ( F  Fn  ( A  u.  B )  /\  ( A  i^i  B )  =  (/)  /\  Z  e.  V )  ->  (
 ( `' F "
 ( _V  \  { Z } ) )  C_  A 
 <->  ( F  |`  B )  =  ( B  X.  { Z } ) ) )
 
Theoremfnsuppeq0 5735 The support of a function is empty iff it is identically zero. (Contributed by Stefan O'Rear, 22-Mar-2015.)
 |-  ( ( F  Fn  A  /\  Z  e.  V )  ->  ( ( `' F " ( _V  \  { Z } )
 )  =  (/)  <->  F  =  ( A  X.  { Z }
 ) ) )
 
Theoremfconstfv 5736* A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5732. (Contributed by NM, 27-Aug-2004.)
 |-  ( F : A --> { B }  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B ) )
 
Theoremfconst3 5737 Two ways to express a constant function. (Contributed by NM, 15-Mar-2007.)
 |-  ( F : A --> { B }  <->  ( F  Fn  A  /\  A  C_  ( `' F " { B } ) ) )
 
Theoremfconst4 5738 Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.)
 |-  ( F : A --> { B }  <->  ( F  Fn  A  /\  ( `' F " { B } )  =  A ) )
 
Theoremresfunexg 5739 The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  |`  B )  e.  _V )
 
TheoremresfunexgALT 5740 The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5739 but requires ax-pow 4190. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  |`  B )  e.  _V )
 
Theoremcofunexg 5741 Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  o.  B )  e.  _V )
 
Theoremcofunex2g 5742 Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
 |-  ( ( A  e.  V  /\  Fun  `' B )  ->  ( A  o.  B )  e.  _V )
 
Theoremfnex 5743 If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of resfunexg 5739. See fnexALT 5744 for alternate proof. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
 
TheoremfnexALT 5744 If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5331. This version of fnex 5743 uses ax-pow 4190, whereas fnex 5743 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
 
Theoremfunex 5745 If the domain of a function exists, so the function. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of fnex 5743. (Note: Any resemblance between F.U.N.E.X. and "Have You Any Eggs" is purely a coincidence originated by Swedish chefs.) (Contributed by NM, 11-Nov-1995.)
 |-  ( ( Fun  F  /\  dom  F  e.  B )  ->  F  e.  _V )
 
Theoremopabex 5746* Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.)
 |-  A  e.  _V   &    |-  ( x  e.  A  ->  E* y ph )   =>    |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
 
Theoremmptexg 5747* If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  e.  V  ->  ( x  e.  A  |->  B )  e.  _V )
 
Theoremmptex 5748* If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 22-Apr-2005.) (Revised by Mario Carneiro, 20-Dec-2013.)
 |-  A  e.  _V   =>    |-  ( x  e.  A  |->  B )  e. 
 _V
 
Theoremfunrnex 5749 If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 5745. (Contributed by NM, 11-Nov-1995.)
 |-  ( dom  F  e.  B  ->  ( Fun  F  ->  ran  F  e.  _V ) )
 
Theoremzfrep6 5750* A version of the Axiom of Replacement. Normally  ph would have free variables  x and  y. Axiom 6 of [Kunen] p. 12. The Separation Scheme ax-sep 4143 cannot be derived from this version and must be stated as a separate axiom in an axiom system (such as Kunen's) that uses this version in place of our ax-rep 4133. (Contributed by NM, 10-Oct-2003.)
 |-  ( A. x  e.  z  E! y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
 
Theoremfex 5751 If the domain of a mapping is a set, the function is a set. (Contributed by NM, 3-Oct-1999.)
 |-  ( ( F : A
 --> B  /\  A  e.  C )  ->  F  e.  _V )
 
Theoremfornex 5752 If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
 |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V ) )
 
Theoremf1dmex 5753 If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 4133. (Contributed by NM, 4-Sep-2004.)
 |-  ( ( F : A -1-1-> B  /\  B  e.  C )  ->  A  e.  _V )
 
Theoremeufnfv 5754* A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 E! f ( f  Fn  A  /\  A. x  e.  A  (
 f `  x )  =  B )
 
Theoremfunfvima 5755 A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.)
 |-  ( ( Fun  F  /\  B  e.  dom  F )  ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) )
 
Theoremfunfvima2 5756 A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.)
 |-  ( ( Fun  F  /\  A  C_  dom  F ) 
 ->  ( B  e.  A  ->  ( F `  B )  e.  ( F " A ) ) )
 
Theoremfunfvima3 5757 A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.)
 |-  ( ( Fun  F  /\  F  C_  G )  ->  ( A  e.  dom  F 
 ->  ( F `  A )  e.  ( G " { A } )
 ) )
 
Theoremfnfvima 5758 The function value of an operand in a set is contained in the image of that set, using the  Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.)
 |-  ( ( F  Fn  A  /\  S  C_  A  /\  X  e.  S ) 
 ->  ( F `  X )  e.  ( F " S ) )
 
Theoremrexima 5759* Existential quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( ( F  Fn  A  /\  B  C_  A )  ->  ( E. x  e.  ( F " B ) ph  <->  E. y  e.  B  ps ) )
 
Theoremralima 5760* Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
 |-  ( x  =  ( F `  y ) 
 ->  ( ph  <->  ps ) )   =>    |-  ( ( F  Fn  A  /\  B  C_  A )  ->  ( A. x  e.  ( F " B ) ph  <->  A. y  e.  B  ps ) )
 
Theoremidref 5761* TODO: This is the same as issref 5058 (which has a much longer proof). Should we replace issref 5058 with this one? - NM 9-May-2016.

Two ways to state a relation is reflexive. (Adapted from Tarski.) (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Proof modification is discouraged.)

 |-  ( (  _I  |`  A ) 
 C_  R  <->  A. x  e.  A  x R x )
 
Theoremfvclss 5762* Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
 |- 
 { y  |  E. x  y  =  ( F `  x ) }  C_  ( ran  F  u.  { (/) } )
 
Theoremfvclex 5763* Existence of the class of values of a set. (Contributed by NM, 9-Nov-1995.)
 |-  F  e.  _V   =>    |-  { y  | 
 E. x  y  =  ( F `  x ) }  e.  _V
 
Theoremfvresex 5764* Existence of the class of values of a restricted class. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  A  e.  _V   =>    |-  { y  | 
 E. x  y  =  ( ( F  |`  A ) `
  x ) }  e.  _V
 
Theoremabrexex 5765* Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in the class expression substituted for  B, which can be thought of as  B ( x ). This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5747, funex 5745, fnex 5743, resfunexg 5739, and funimaexg 5331. See also abrexex2 5782. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   =>    |-  { y  | 
 E. x  e.  A  y  =  B }  e.  _V
 
Theoremabrexexg 5766* Existence of a class abstraction of existentially restricted sets.  x is normally a free-variable parameter in  B. The antecedent assures us that  A is a set. (Contributed by NM, 3-Nov-2003.)
 |-  ( A  e.  V  ->  { y  |  E. x  e.  A  y  =  B }  e.  _V )
 
Theoremelabrex 5767* Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.)
 |-  B  e.  _V   =>    |-  ( x  e.  A  ->  B  e.  { y  |  E. x  e.  A  y  =  B } )
 
Theoremabrexco 5768* Composition of two image maps  C ( y ) and 
B ( w ). (Contributed by NM, 27-May-2013.)
 |-  B  e.  _V   &    |-  (
 y  =  B  ->  C  =  D )   =>    |-  { x  |  E. y  e.  { z  |  E. w  e.  A  z  =  B } x  =  C }  =  { x  |  E. w  e.  A  x  =  D }
 
Theoremiunexg 5769* The existence of an indexed union. 
x is normally a free-variable parameter in  B. (Contributed by NM, 23-Mar-2006.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  W )  ->  U_ x  e.  A  B  e.  _V )
 
Theoremabrexex2g 5770* Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( A  e.  V  /\  A. x  e.  A  { y  | 
 ph }  e.  W )  ->  { y  | 
 E. x  e.  A  ph
 }  e.  _V )
 
Theoremopabex3 5771* Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  A  e.  _V   &    |-  ( x  e.  A  ->  { y  |  ph }  e.  _V )   =>    |- 
 { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
 
Theoremiunex 5772* The existence of an indexed union. 
x is normally a free-variable parameter in the class expression substituted for  B, which can be read informally as  B ( x ). (Contributed by NM, 13-Oct-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  U_ x  e.  A  B  e.  _V
 
Theoremimaiun 5773* The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
 |-  ( A " U_ x  e.  B  C )  = 
 U_ x  e.  B  ( A " C )
 
Theoremimauni 5774* The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (Contributed by NM, 9-Aug-2004.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
 |-  ( A " U. B )  =  U_ x  e.  B  ( A " x )
 
Theoremfniunfv 5775* The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
 |-  ( F  Fn  A  -> 
 U_ x  e.  A  ( F `  x )  =  U. ran  F )
 
Theoremfuniunfv 5776* The indexed union of a function's values is the union of its image under the index class.

Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to  F  Fn  A, the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)

 |-  ( Fun  F  ->  U_ x  e.  A  ( F `  x )  =  U. ( F
 " A ) )
 
Theoremfuniunfvf 5777* The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 5776 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.)
 |-  F/_ x F   =>    |-  ( Fun  F  ->  U_ x  e.  A  ( F `  x )  =  U. ( F
 " A ) )
 
Theoremeluniima 5778* Membership in the union of an image of a function. (Contributed by NM, 28-Sep-2006.)
 |-  ( Fun  F  ->  ( B  e.  U. ( F " A )  <->  E. x  e.  A  B  e.  ( F `  x ) ) )
 
Theoremelunirn 5779* Membership in the union of the range of a function. See elunirnALT 5781 for alternate proof. (Contributed by NM, 24-Sep-2006.)
 |-  ( Fun  F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `
  x ) ) )
 
Theoremfnunirn 5780* Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015.)
 |-  ( F  Fn  I  ->  ( A  e.  U. ran  F  <->  E. x  e.  I  A  e.  ( F `  x ) ) )
 
TheoremelunirnALT 5781* Membership in the union of the range of a function, proved directly. Unlike elunirn 5779, it doesn't appeal to ndmfv 5554 (via funiunfv 5776). (Contributed by NM, 24-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( Fun  F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `
  x ) ) )
 
Theoremabrexex2 5782* Existence of an existentially restricted class abstraction.  ph is normally has free-variable parameters  x and  y. See also abrexex 5765. (Contributed by NM, 12-Sep-2004.)
 |-  A  e.  _V   &    |-  { y  |  ph }  e.  _V   =>    |-  { y  |  E. x  e.  A  ph
 }  e.  _V
 
Theoremabexssex 5783* Existence of a class abstraction with an existentially quantified expression. Both  x and  y can be free in  ph. (Contributed by NM, 29-Jul-2006.)
 |-  A  e.  _V   &    |-  { y  |  ph }  e.  _V   =>    |-  { y  |  E. x ( x 
 C_  A  /\  ph ) }  e.  _V
 
Theoremabexex 5784* A condition where a class builder continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007.)
 |-  A  e.  _V   &    |-  ( ph  ->  x  e.  A )   &    |- 
 { y  |  ph }  e.  _V   =>    |- 
 { y  |  E. x ph }  e.  _V
 
Theoremdff13 5785* A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
 |-  ( F : A -1-1-> B  <-> 
 ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `
  x )  =  ( F `  y
 )  ->  x  =  y ) ) )
 
Theoremdff13f 5786* A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.)
 |-  F/_ x F   &    |-  F/_ y F   =>    |-  ( F : A -1-1-> B  <->  ( F : A
 --> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `
  x )  =  ( F `  y
 )  ->  x  =  y ) ) )
 
Theoremf1mpt 5787* Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( x  =  y  ->  C  =  D )   =>    |-  ( F : A -1-1-> B  <->  (
 A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
 
Theoremf1fveq 5788 Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.)
 |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A ) )  ->  ( ( F `  C )  =  ( F `  D )  <->  C  =  D ) )
 
Theoremf1elima 5789 Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( F : A -1-1-> B  /\  X  e.  A  /\  Y  C_  A )  ->  ( ( F `
  X )  e.  ( F " Y ) 
 <->  X  e.  Y ) )
 
Theoremf1imass 5790 Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
 |-  ( ( F : A -1-1-> B  /\  ( C 
 C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C_  ( F
 " D )  <->  C  C_  D ) )
 
Theoremf1imaeq 5791 Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014.)
 |-  ( ( F : A -1-1-> B  /\  ( C 
 C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  =  ( F " D )  <->  C  =  D ) )
 
Theoremf1imapss 5792 Taking images under a one-to-one function preserves proper subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
 |-  ( ( F : A -1-1-> B  /\  ( C 
 C_  A  /\  D  C_  A ) )  ->  ( ( F " C )  C.  ( F
 " D )  <->  C  C.  D ) )
 
Theoremdff1o6 5793* A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008.)
 |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  ran 
 F  =  B  /\  A. x  e.  A  A. y  e.  A  (
 ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
 
Theoremf1ocnvfv1 5794 The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  A )  ->  ( `' F `  ( F `  C ) )  =  C )
 
Theoremf1ocnvfv2 5795 The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  ( F `  ( `' F `  C ) )  =  C )
 
Theoremf1ocnvfv 5796 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  A )  ->  ( ( F `
  C )  =  D  ->  ( `' F `  D )  =  C ) )
 
Theoremf1ocnvfvb 5797 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  A  /\  D  e.  B ) 
 ->  ( ( F `  C )  =  D  <->  ( `' F `  D )  =  C ) )
 
Theoremf1ocnvdm 5798 The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.)
 |-  ( ( F : A
 -1-1-onto-> B  /\  C  e.  B )  ->  ( `' F `  C )  e.  A )
 
Theoremfcof1 5799 An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  ( ( F : A
 --> B  /\  ( R  o.  F )  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
 
Theoremfcofo 5800 An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
 |-  ( ( F : A
 --> B  /\  S : B
 --> A  /\  ( F  o.  S )  =  (  _I  |`  B ) )  ->  F : A -onto-> B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32227
  Copyright terms: Public domain < Previous  Next >