HomeHome Metamath Proof Explorer
Theorem List (p. 62 of 315)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21490)
  Hilbert Space Explorer  Hilbert Space Explorer
(21491-23013)
  Users' Mathboxes  Users' Mathboxes
(23014-31421)
 

Theorem List for Metamath Proof Explorer - 6101-6200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfo2nd 6101 The  2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |- 
 2nd : _V -onto-> _V
 
Theoremf1stres 6102 Mapping of a restriction of the 
1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) --> A
 
Theoremf2ndres 6103 Mapping of a restriction of the 
2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) --> B
 
Theoremfo1stres 6104 Onto mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
 |-  ( B  =/=  (/)  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
 
Theoremfo2ndres 6105 Onto mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
 |-  ( A  =/=  (/)  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
 
Theorem1st2val 6106* Value of an alternate definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( { <. <. x ,  y >. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A )
 
Theorem2nd2val 6107* Value of an alternate definition of the  2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( { <. <. x ,  y >. ,  z >.  |  z  =  y } `  A )  =  ( 2nd `  A )
 
Theorem1stcof 6108 Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
 |-  ( F : A --> ( B  X.  C ) 
 ->  ( 1st  o.  F ) : A --> B )
 
Theorem2ndcof 6109 Composition of the first member function with another function. (Contributed by FL, 15-Oct-2012.)
 |-  ( F : A --> ( B  X.  C ) 
 ->  ( 2nd  o.  F ) : A --> C )
 
Theoremxp1st 6110 Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  e.  ( B  X.  C )  ->  ( 1st `  A )  e.  B )
 
Theoremxp2nd 6111 Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e.  C )
 
Theoremelxp6 6112 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5158. (Contributed by NM, 9-Oct-2004.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >.  /\  (
 ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
 
Theoremelxp7 6113 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5158. (Contributed by NM, 19-Aug-2006.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
 
Theoremdifxp 6114 Difference of Cartesian products, expressed in terms of a union of Cartesian products of differences. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 26-Jun-2014.)
 |-  ( ( C  X.  D )  \  ( A  X.  B ) )  =  ( ( ( C  \  A )  X.  D )  u.  ( C  X.  ( D  \  B ) ) )
 
Theoremdifxp1 6115 Difference law for cross product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.)
 |-  ( ( A  \  B )  X.  C )  =  ( ( A  X.  C )  \  ( B  X.  C ) )
 
Theoremdifxp2 6116 Difference law for cross product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.)
 |-  ( A  X.  ( B  \  C ) )  =  ( ( A  X.  B )  \  ( A  X.  C ) )
 
Theoremeqopi 6117 Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( A  e.  ( V  X.  W ) 
 /\  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C )
 )  ->  A  =  <. B ,  C >. )
 
Theoremxp2 6118* Representation of cross product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.)
 |-  ( A  X.  B )  =  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x )  e.  B ) }
 
Theoremunielxp 6119 The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.)
 |-  ( A  e.  ( B  X.  C )  ->  U. A  e.  U. ( B  X.  C ) )
 
Theorem1st2nd2 6120 Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.)
 |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >. )
 
Theorem1st2ndb 6121 Reconstruction of an ordered pair in terms of its components. (Contributed by NM, 25-Feb-2014.)
 |-  ( A  e.  ( _V  X.  _V )  <->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >. )
 
Theoremxpopth 6122 An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.)
 |-  ( ( A  e.  ( C  X.  D ) 
 /\  B  e.  ( R  X.  S ) ) 
 ->  ( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B ) )  <->  A  =  B ) )
 
Theoremeqop 6123 Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  ( V  X.  W )  ->  ( A  =  <. B ,  C >.  <->  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C )
 ) )
 
Theoremeqop2 6124 Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
 |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  =  <. B ,  C >.  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C ) ) )
 
Theoremop1steq 6125* Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
 |-  ( A  e.  ( V  X.  W )  ->  ( ( 1st `  A )  =  B  <->  E. x  A  =  <. B ,  x >. ) )
 
Theorem2nd1st 6126 Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
 |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A ) >. )
 
Theorem1st2nd 6127 Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
 |-  ( ( Rel  B  /\  A  e.  B ) 
 ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >. )
 
Theorem1stdm 6128 The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
 |-  ( ( Rel  R  /\  A  e.  R ) 
 ->  ( 1st `  A )  e.  dom  R )
 
Theorem2ndrn 6129 The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
 |-  ( ( Rel  R  /\  A  e.  R ) 
 ->  ( 2nd `  A )  e.  ran  R )
 
Theorem1st2ndbr 6130 Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.)
 |-  ( ( Rel  B  /\  A  e.  B ) 
 ->  ( 1st `  A ) B ( 2nd `  A ) )
 
Theoremreleldm2 6131* Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
 |-  ( Rel  A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
 
Theoremreldm 6132* An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
 |-  ( Rel  A  ->  dom 
 A  =  ran  (  x  e.  A  |->  ( 1st `  x ) ) )
 
Theoremsbcopeq1a 6133 Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 3002 that avoids the existential quantifiers of copsexg 4251). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  ( [. ( 1st `  A )  /  x ]. [. ( 2nd `  A )  /  y ]. ph  <->  ph ) )
 
Theoremcsbopeq1a 6134 Equality theorem for substitution of a class  A for an ordered pair  <. x ,  y >. in  B (analog of csbeq1a 3090). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  [_ ( 1st `  A )  /  x ]_ [_ ( 2nd `  A )  /  y ]_ B  =  B )
 
Theoremdfopab2 6135* A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. x ,  y >.  |  ph }  =  { z  e.  ( _V  X.  _V )  | 
 [. ( 1st `  z
 )  /  x ]. [. ( 2nd `  z )  /  y ]. ph }
 
Theoremdfoprab3s 6136* A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
 
Theoremdfoprab3 6137* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
 |-  ( w  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ps }
 
Theoremdfoprab4 6138* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( w  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
 
Theoremdfoprab4f 6139* Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( w  =  <. x ,  y >.  ->  ( ph  <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
 
Theoremdfxp3 6140* Define the cross product of three classes. Compare df-xp 4694. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
 |-  ( ( A  X.  B )  X.  C )  =  { <. <. x ,  y >. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C ) }
 
Theoremcopsex2gb 6141* Implicit substitution inference for ordered pairs. Compare copsex2ga 6142. (Contributed by NM, 12-Mar-2014.)
 |-  ( A  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x E. y ( A  =  <. x ,  y >.  /\ 
 ps )  <->  ( A  e.  ( _V  X.  _V )  /\  ph ) )
 
Theoremcopsex2ga 6142* Implicit substitution inference for ordered pairs. Compare copsex2g 4253. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A  e.  ( V  X.  W ) 
 ->  ( ph  <->  E. x E. y
 ( A  =  <. x ,  y >.  /\  ps ) ) )
 
Theoremelopaba 6143* Membership in an ordered pair class builder. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A  e.  {
 <. x ,  y >.  |  ps }  <->  ( A  e.  ( _V  X.  _V )  /\  ph ) )
 
Theoremexopxfr 6144* Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  ( _V  X.  _V ) ph  <->  E. y E. z ps )
 
Theoremexopxfr2 6145* Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( Rel  A  ->  ( E. x  e.  A  ph  <->  E. y E. z
 ( <. y ,  z >.  e.  A  /\  ps ) ) )
 
Theoremelopabi 6146* A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
 |-  ( x  =  ( 1st `  A )  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  ( 2nd `  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( A  e.  {
 <. x ,  y >.  | 
 ph }  ->  ch )
 
Theoremeloprabi 6147* A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( x  =  ( 1st `  ( 1st `  A ) )  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  ( 2nd `  ( 1st `  A ) )  ->  ( ps  <->  ch ) )   &    |-  ( z  =  ( 2nd `  A )  ->  ( ch  <->  th ) )   =>    |-  ( A  e.  {
 <. <. x ,  y >. ,  z >.  |  ph } 
 ->  th )
 
Theoremmpt2mptsx 6148* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
 
Theoremmpt2mpts 6149* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  ( A  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
 
Theoremdmmpt2ssx 6150* The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  dom  F  C_  U_ x  e.  A  ( { x }  X.  B )
 
Theoremfmpt2x 6151* Functionality, domain and range of a class given by the "maps to" notation, where  B ( x ) is not constant but depends on  x. (Contributed by NM, 29-Dec-2014.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : U_ x  e.  A  ( { x }  X.  B ) --> D )
 
Theoremfmpt2 6152* Functionality, domain and range of a class given by the "maps to" notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : ( A  X.  B ) --> D )
 
Theoremfnmpt2 6153* Functionality and domain of a class given by the "maps to" notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B ) )
 
Theoremfnmpt2i 6154* Functionality and domain of a class given by the "maps to" notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   =>    |-  F  Fn  ( A  X.  B )
 
Theoremdmmpt2 6155* Domain of a class given by the "maps to" notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   =>    |- 
 dom  F  =  ( A  X.  B )
 
Theoremmpt2exxg 6156* Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
 
Theoremmpt2exg 6157* Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A  e.  R  /\  B  e.  S )  ->  F  e.  _V )
 
Theoremmpt2exga 6158* If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by NM, 12-Sep-2011.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  A ,  y  e.  B  |->  C )  e. 
 _V )
 
Theoremmpt2ex 6159* If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by Mario Carneiro, 20-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
 
Theoremmpt20 6160 A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.)
 |-  ( x  e.  (/) ,  y  e.  B  |->  C )  =  (/)
 
Theoremovmptss 6161* If all the values of the mapping are subsets of a class  X, then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  C_  X  ->  ( E F G )  C_  X )
 
Theoremrelmpt2opab 6162* Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. z ,  w >.  |  ph } )   =>    |-  Rel  ( C F D )
 
Theoremfmpt2co 6163* Composition of two functions. Variation of fmptco 5652 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  R  e.  C )   &    |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  R ) )   &    |-  ( ph  ->  G  =  ( z  e.  C  |->  S ) )   &    |-  (
 z  =  R  ->  S  =  T )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A ,  y  e.  B  |->  T ) )
 
Theoremoprabco 6164* Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  D )   &    |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C ) )   =>    |-  ( H  Fn  D  ->  G  =  ( H  o.  F ) )
 
Theoremoprab2co 6165* Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  R )   &    |-  ( ( x  e.  A  /\  y  e.  B )  ->  D  e.  S )   &    |-  F  =  ( x  e.  A ,  y  e.  B  |->  <. C ,  D >. )   &    |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( C M D ) )   =>    |-  ( M  Fn  ( R  X.  S )  ->  G  =  ( M  o.  F ) )
 
Theoremdf1st2 6166* An alternate possible definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
 
Theoremdf2nd2 6167* An alternate possible definition of the  2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
 
Theorem1stconst 6168 The mapping of a restriction of the  1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
 |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B }
 ) ) : ( A  X.  { B } ) -1-1-onto-> A )
 
Theorem2ndconst 6169 The mapping of a restriction of the  2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
 |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -1-1-onto-> B )
 
Theoremdfmpt2 6170* Alternate definition for the "maps to" notation df-mpt2 5824 (although it requires that  C be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  C  e.  _V   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  = 
 U_ x  e.  A  U_ y  e.  B  { <.
 <. x ,  y >. ,  C >. }
 
Theoremcurry1 6171* Composition with  `' ( 2nd  |`  ( { C }  X.  _V ) ) turns any binary operation  F with a constant first operand into a function  G of the second operand only. This transformation is called "currying." (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Dec-2014.)
 |-  G  =  ( F  o.  `' ( 2nd  |`  ( { C }  X.  _V ) ) )   =>    |-  ( ( F  Fn  ( A  X.  B ) 
 /\  C  e.  A )  ->  G  =  ( x  e.  B  |->  ( C F x ) ) )
 
Theoremcurry1val 6172 The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  G  =  ( F  o.  `' ( 2nd  |`  ( { C }  X.  _V ) ) )   =>    |-  ( ( F  Fn  ( A  X.  B ) 
 /\  C  e.  A )  ->  ( G `  D )  =  ( C F D ) )
 
Theoremcurry1f 6173 Functionality of a curried function with a constant first argument. (Contributed by NM, 29-Mar-2008.)
 |-  G  =  ( F  o.  `' ( 2nd  |`  ( { C }  X.  _V ) ) )   =>    |-  ( ( F :
 ( A  X.  B )
 --> D  /\  C  e.  A )  ->  G : B
 --> D )
 
Theoremcurry2 6174* Composition with  `' ( 1st  |`  ( _V  X.  { C }
) ) turns any binary operation  F with a constant second operand into a function  G of the first operand only. This transformation is called "currying." (If this becomes frequently used, we can introduce a new notation for the hypothesis.) (Contributed by NM, 16-Dec-2008.)
 |-  G  =  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )   =>    |-  ( ( F  Fn  ( A  X.  B ) 
 /\  C  e.  B )  ->  G  =  ( x  e.  A  |->  ( x F C ) ) )
 
Theoremcurry2f 6175 Functionality of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.)
 |-  G  =  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )   =>    |-  ( ( F :
 ( A  X.  B )
 --> D  /\  C  e.  B )  ->  G : A
 --> D )
 
Theoremcurry2val 6176 The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.)
 |-  G  =  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )   =>    |-  ( ( F  Fn  ( A  X.  B ) 
 /\  C  e.  B )  ->  ( G `  D )  =  ( D F C ) )
 
Theoremcnvf1olem 6177 Lemma for cnvf1o 6178. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) ) 
 ->  ( C  e.  `' A  /\  B  =  U. `' { C } )
 )
 
Theoremcnvf1o 6178* Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( Rel  A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
 
Theoremfparlem1 6179 Lemma for fpar 6183. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( `' ( 1st  |`  ( _V  X.  _V ) ) " { x } )  =  ( { x }  X.  _V )
 
Theoremfparlem2 6180 Lemma for fpar 6183. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( `' ( 2nd  |`  ( _V  X.  _V ) ) " {
 y } )  =  ( _V  X.  {
 y } )
 
Theoremfparlem3 6181* Lemma for fpar 6183. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( F  Fn  A  ->  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( F  o.  ( 1st  |`  ( _V 
 X.  _V ) ) ) )  =  U_ x  e.  A  ( ( { x }  X.  _V )  X.  ( { ( F `
  x ) }  X.  _V ) ) )
 
Theoremfparlem4 6182* Lemma for fpar 6183. (Contributed by NM, 22-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( G  Fn  B  ->  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( G  o.  ( 2nd  |`  ( _V 
 X.  _V ) ) ) )  =  U_ y  e.  B  ( ( _V 
 X.  { y } )  X.  ( _V  X.  {
 ( G `  y
 ) } ) ) )
 
Theoremfpar 6183* Merge two functions in parallel. Use as the second argument of a composition with a (2-place) operation to build compound operations such as  z  =  ( ( sqr `  x
)  +  ( abs `  y ) ). (Contributed by NM, 17-Sep-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
 |-  H  =  ( ( `' ( 1st  |`  ( _V 
 X.  _V ) )  o.  ( F  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( G  o.  ( 2nd  |`  ( _V 
 X.  _V ) ) ) ) )   =>    |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  H  =  ( x  e.  A ,  y  e.  B  |->  <. ( F `
  x ) ,  ( G `  y
 ) >. ) )
 
Theoremfsplit 6184 A function that can be used to feed a common value to both operands of an operation. Use as the second argument of a composition with the function of fpar 6183 in order to build compound functions such as  y  =  ( ( sqr `  x
)  +  ( abs `  x ) ). (Contributed by NM, 17-Sep-2007.)
 |-  `' ( 1st  |`  _I  )  =  ( x  e.  _V  |->  <. x ,  x >. )
 
Theoremalgrflem 6185 Lemma for algrf 12737 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( B ( F  o.  1st ) C )  =  ( F `
  B )
 
Theoremfrxp 6186* A lexicographical ordering of two well founded classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.) (Proof shortened by Wolf Lammen, 4-Oct-2014.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
 )  \/  ( ( 1st `  x )  =  ( 1st `  y
 )  /\  ( 2nd `  x ) S ( 2nd `  y )
 ) ) ) }   =>    |-  (
 ( R  Fr  A  /\  S  Fr  B ) 
 ->  T  Fr  ( A  X.  B ) )
 
Theoremxporderlem 6187* Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
 )  \/  ( ( 1st `  x )  =  ( 1st `  y
 )  /\  ( 2nd `  x ) S ( 2nd `  y )
 ) ) ) }   =>    |-  ( <. a ,  b >. T
 <. c ,  d >.  <->  (
 ( ( a  e.  A  /\  c  e.  A )  /\  (
 b  e.  B  /\  d  e.  B )
 )  /\  ( a R c  \/  (
 a  =  c  /\  b S d ) ) ) )
 
Theorempoxp 6188* A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
 )  \/  ( ( 1st `  x )  =  ( 1st `  y
 )  /\  ( 2nd `  x ) S ( 2nd `  y )
 ) ) ) }   =>    |-  (
 ( R  Po  A  /\  S  Po  B ) 
 ->  T  Po  ( A  X.  B ) )
 
Theoremsoxp 6189* A lexicographical ordering of two strictly ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
 )  \/  ( ( 1st `  x )  =  ( 1st `  y
 )  /\  ( 2nd `  x ) S ( 2nd `  y )
 ) ) ) }   =>    |-  (
 ( R  Or  A  /\  S  Or  B ) 
 ->  T  Or  ( A  X.  B ) )
 
Theoremwexp 6190* A lexicographical ordering of two well ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
 )  \/  ( ( 1st `  x )  =  ( 1st `  y
 )  /\  ( 2nd `  x ) S ( 2nd `  y )
 ) ) ) }   =>    |-  (
 ( R  We  A  /\  S  We  B ) 
 ->  T  We  ( A  X.  B ) )
 
Theoremfnwelem 6191* Lemma for fnwe 6192. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  A )  /\  ( ( F `
  x ) R ( F `  y
 )  \/  ( ( F `  x )  =  ( F `  y )  /\  x S y ) ) ) }   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  R  We  B )   &    |-  ( ph  ->  S  We  A )   &    |-  ( ph  ->  ( F " w )  e.  _V )   &    |-  Q  =  { <. u ,  v >.  |  ( ( u  e.  ( B  X.  A )  /\  v  e.  ( B  X.  A ) )  /\  ( ( 1st `  u ) R ( 1st `  v
 )  \/  ( ( 1st `  u )  =  ( 1st `  v
 )  /\  ( 2nd `  u ) S ( 2nd `  v )
 ) ) ) }   &    |-  G  =  ( z  e.  A  |->  <.
 ( F `  z
 ) ,  z >. )   =>    |-  ( ph  ->  T  We  A )
 
Theoremfnwe 6192* A variant on lexicographic order, which sorts first by some function of the base set, and then by a "backup" well-ordering when the function value is equal on both elements. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  A )  /\  ( ( F `
  x ) R ( F `  y
 )  \/  ( ( F `  x )  =  ( F `  y )  /\  x S y ) ) ) }   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  R  We  B )   &    |-  ( ph  ->  S  We  A )   &    |-  ( ph  ->  ( F " w )  e.  _V )   =>    |-  ( ph  ->  T  We  A )
 
Theoremfnse 6193* Condition for the well-order in fnwe 6192 to be set-like. (Contributed by Mario Carneiro, 25-Jun-2015.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  A )  /\  ( ( F `
  x ) R ( F `  y
 )  \/  ( ( F `  x )  =  ( F `  y )  /\  x S y ) ) ) }   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  R Se  B )   &    |-  ( ph  ->  ( `' F " w )  e. 
 _V )   =>    |-  ( ph  ->  T Se  A )
 
2.4.13  Function transposition
 
Syntaxctpos 6194 The transposition of a function.
 class tpos  F
 
Definitiondf-tpos 6195* Define the transposition of a function, which is a function  G  = tpos  F satisfying  G ( x ,  y )  =  F ( y ,  x ). (Contributed by Mario Carneiro, 10-Sep-2015.)
 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
 } )  |->  U. `' { x } ) )
 
Theoremtposss 6196 Subset theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( F  C_  G  -> tpos 
 F  C_ tpos  G )
 
Theoremtposeq 6197 Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  ( F  =  G  -> tpos 
 F  = tpos  G )
 
Theoremtposeqd 6198 Equality theorem for transposition. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( ph  ->  F  =  G )   =>    |-  ( ph  -> tpos  F  = tpos  G )
 
Theoremtposssxp 6199 The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.)
 |- tpos  F  C_  ( ( `'
 dom  F  u.  { (/) } )  X.  ran  F )
 
Theoremreltpos 6200 The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |- 
 Rel tpos  F
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31421
  Copyright terms: Public domain < Previous  Next >