HomeHome Metamath Proof Explorer
Theorem List (p. 84 of 323)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-21500)
  Hilbert Space Explorer  Hilbert Space Explorer
(21501-23023)
  Users' Mathboxes  Users' Mathboxes
(23024-32227)
 

Theorem List for Metamath Proof Explorer - 8301-8400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhargch 8301 If  A  +  ~~  ~P A, then  A is a GCH-set. The much simpler converse to gchhar 8295. (Contributed by Mario Carneiro, 2-Jun-2015.)
 |-  ( (har `  A )  ~~  ~P A  ->  A  e. GCH )
 
Theoremalephgch 8302 If  ( aleph `  suc  A ) is equinumerous to the powerset of  ( aleph `  A
), then  ( aleph `  A
) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.)
 |-  ( ( aleph `  suc  A )  ~~  ~P ( aleph `  A )  ->  ( aleph `  A )  e. GCH )
 
Theoremgch2 8303 It is sufficient to require that all alephs are GCH-sets to ensure the full generalized continuum hypothesis. (The proof uses the Axiom of Regularity.) (Contributed by Mario Carneiro, 15-May-2015.)
 |-  (GCH  =  _V  <->  ran  aleph  C_ GCH )
 
Theoremgch3 8304 An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015.)
 |-  (GCH  =  _V  <->  A. x  e.  On  ( aleph `  suc  x ) 
 ~~  ~P ( aleph `  x ) )
 
Theoremgch-kn 8305* The equivalence of two versions of the Generalized Continuum Hypothesis. The right-hand side is the standard version in the literature. The left-hand side is a version devised by Kannan Nambiar, which he calls the Axiom of Combinatorial Sets. For the notation and motivation behind this axiom, see his paper, "Derivation of Continuum Hypothesis from Axiom of Combinatorial Sets," available at http://www.e-atheneum.net/science/derivation_ch.pdf. The equivalence of the two sides provides a negative answer to Open Problem 2 in http://www.e-atheneum.net/science/open_problem_print.pdf. The key idea in the proof below is to equate both sides of alephexp2 8205 to the successor aleph using enen2 7004. (Contributed by NM, 1-Oct-2004.)
 |-  ( A  e.  On  ->  ( ( aleph `  suc  A )  ~~  { x  |  ( x  C_  ( aleph `  A )  /\  x  ~~  ( aleph `  A )
 ) }  <->  ( aleph `  suc  A )  ~~  ( 2o 
 ^m  ( aleph `  A ) ) ) )
 
PART 4  TG (TARSKI-GROTHENDIECK) SET THEORY

Here we introduce Tarski-Grothendieck (TG) set theory, named after mathematicians Alfred Tarski and Alexander Grothendieck. TG theory extends ZFC with the TG Axiom ax-groth 8447, which states that for every set  x there is an inaccessible cardinal  y such that  y is not in  x. The addition of this axiom to ZFC set theory provides a framework for category theory, thus for all practical purposes giving us a complete foundation for "all of mathematics."

We first introduce the concept of inaccessibles, including Weakly and strongly inaccessible cardinals (df-wina 8308 and df-ina 8309 respectively), Tarski's classes (df-tsk 8373), and a Grothendieck's universe (df-gru 8415). We then introduce the Tarski's axiom ax-groth 8447 and prove various properties from that.

 
4.1  Inaccessibles
 
4.1.1  Weakly and strongly inaccessible cardinals
 
Syntaxcwina 8306 The class of weak inaccessibles.
 class  Inacc W
 
Syntaxcina 8307 The class of strong inaccessibles.
 class  Inacc
 
Definitiondf-wina 8308* An ordinal is weakly inaccessible iff it is a regular limit cardinal. Note that our definition allows  om as a weakly inacessible cardinal. (Contributed by Mario Carneiro, 22-Jun-2013.)
 |- 
 Inacc W  =  { x  |  ( x  =/= 
 (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  E. z  e.  x  y  ~<  z ) }
 
Definitiondf-ina 8309* An ordinal is strongly inaccessible iff it is a regular strong limit cardinal, which is to say that it dominates the powersets of every smaller ordinal. (Contributed by Mario Carneiro, 22-Jun-2013.)
 |- 
 Inacc  =  { x  |  ( x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  ~P y  ~<  x ) }
 
Theoremelwina 8310* Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
 |-  ( A  e.  Inacc W  <-> 
 ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
 
Theoremelina 8311* Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
 |-  ( A  e.  Inacc  <->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  ~P x  ~<  A ) )
 
Theoremwinaon 8312 A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014.)
 |-  ( A  e.  Inacc W 
 ->  A  e.  On )
 
Theoreminawinalem 8313* Lemma for inawina 8314. (Contributed by Mario Carneiro, 8-Jun-2014.)
 |-  ( A  e.  On  ->  ( A. x  e.  A  ~P x  ~<  A 
 ->  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
 
Theoreminawina 8314 Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014.)
 |-  ( A  e.  Inacc  ->  A  e.  Inacc W )
 
Theoremomina 8315  om is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow  om as an inaccessible cardinal, but this choice allows us to reuse our results for inaccessibles for  om.) (Contributed by Mario Carneiro, 29-May-2014.)
 |- 
 om  e.  Inacc
 
Theoremwinacard 8316 A weakly inaccessible cardinal is a cardinal. (Contributed by Mario Carneiro, 29-May-2014.)
 |-  ( A  e.  Inacc W 
 ->  ( card `  A )  =  A )
 
Theoremwinainflem 8317* A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
 |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  om  C_  A )
 
Theoremwinainf 8318 A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.)
 |-  ( A  e.  Inacc W 
 ->  om  C_  A )
 
Theoremwinalim 8319 A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014.)
 |-  ( A  e.  Inacc W 
 ->  Lim  A )
 
Theoremwinalim2 8320* A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.)
 |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  ->  E. x ( (
 aleph `  x )  =  A  /\  Lim  x ) )
 
Theoremwinafp 8321 A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014.)
 |-  ( ( A  e.  Inacc W  /\  A  =/=  om )  ->  ( aleph `  A )  =  A )
 
Theoremwinafpi 8322 This theorem, which states that a nontrivial inaccessible cardinal is its own aleph number, is stated here in inference form, where the assumptions are in the hypotheses rather than an antecedent. Often, we use dedth 3608 to turn this type of statement into the closed form statement winafp 8321, but in this case, since it is consistent with ZFC that there are no nontrivial inaccessible cardinals, it is not possible to prove winafp 8321 using this theorem and dedth 3608, in ZFC. (You can prove this if you use ax-groth 8447, though.) (Contributed by Mario Carneiro, 28-May-2014.)
 |-  A  e.  Inacc W   &    |-  A  =/=  om   =>    |-  ( aleph `  A )  =  A
 
Theoremgchina 8323 Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.)
 |-  (GCH  =  _V  ->  Inacc W  =  Inacc )
 
4.1.2  Weak universes
 
Syntaxcwun 8324 Extend class definition to include the class of all weak universes.
 class WUni
 
Syntaxcwunm 8325 Extend class definition to include the map whose value is the smallest weak universe.
 class wUniCl
 
Definitiondf-wun 8326* The class of all weak universes. A weak universe is a nonempty transitive class closed under union, pairing, and powerset. The advantage of a weak universe over a Grothendieck universe is that weak universes satisfy the analogue uniwun 8364 of grothtsk 8459 in ZFC. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |- WUni  =  { u  |  ( Tr  u  /\  u  =/= 
 (/)  /\  A. x  e.  u  ( U. x  e.  u  /\  ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u ) ) }
 
Definitiondf-wunc 8327* A function that maps a set  x to the smallest weak universe that contains the elements of the set. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |- wUniCl  =  ( x  e.  _V  |->  |^|
 { u  e. WUni  |  x  C_  u } )
 
Theoremiswun 8328* Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( U  e.  V  ->  ( U  e. WUni  <->  ( Tr  U  /\  U  =/=  (/)  /\  A. x  e.  U  ( U. x  e.  U  /\  ~P x  e.  U  /\  A. y  e.  U  { x ,  y }  e.  U ) ) ) )
 
Theoremwuntr 8329 A weak universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( U  e. WUni  ->  Tr  U )
 
Theoremwununi 8330 A weak universe is closed under union. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  U. A  e.  U )
 
Theoremwunpw 8331 A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  ~P A  e.  U )
 
Theoremwunelss 8332 The elements of a weak universe are also subsets of it. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  A 
 C_  U )
 
Theoremwunpr 8333 A weak universe is closed under pairing. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  U )   =>    |-  ( ph  ->  { A ,  B }  e.  U )
 
Theoremwunun 8334 A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  U )   =>    |-  ( ph  ->  ( A  u.  B )  e.  U )
 
Theoremwuntp 8335 A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  U )   &    |-  ( ph  ->  C  e.  U )   =>    |-  ( ph  ->  { A ,  B ,  C }  e.  U )
 
Theoremwunss 8336 A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  C_  A )   =>    |-  ( ph  ->  B  e.  U )
 
Theoremwunin 8337 A weak universe is closed under intersections. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  ( A  i^i  B )  e.  U )
 
Theoremwundif 8338 A weak universe is closed under set difference. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  ( A  \  B )  e.  U )
 
Theoremwunint 8339 A weak universe is closed under intersections. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ( ph  /\  A  =/=  (/) )  ->  |^| A  e.  U )
 
Theoremwunsn 8340 A weak universe is closed under singletons. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  { A }  e.  U )
 
Theoremwunsuc 8341 A weak universe is closed under successors. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  suc 
 A  e.  U )
 
Theoremwun0 8342 A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   =>    |-  ( ph  ->  (/)  e.  U )
 
Theoremwunr1om 8343 A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   =>    |-  ( ph  ->  ( R1 " om )  C_  U )
 
Theoremwunom 8344 A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   =>    |-  ( ph  ->  om  C_  U )
 
Theoremwunfi 8345 A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A 
 C_  U )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  ->  A  e.  U )
 
Theoremwunop 8346 A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  U )   =>    |-  ( ph  ->  <. A ,  B >.  e.  U )
 
Theoremwunot 8347 A weak universe is closed under ordered triples. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  U )   &    |-  ( ph  ->  C  e.  U )   =>    |-  ( ph  ->  <. A ,  B ,  C >.  e.  U )
 
Theoremwunxp 8348 A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  U )   =>    |-  ( ph  ->  ( A  X.  B )  e.  U )
 
Theoremwunpm 8349 A weak universe is closed under partial mappings. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  U )   =>    |-  ( ph  ->  ( A  ^pm  B )  e.  U )
 
Theoremwunmap 8350 A weak universe is closed under mappings. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  U )   =>    |-  ( ph  ->  ( A  ^m  B )  e.  U )
 
Theoremwunf 8351 A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  U )   &    |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  F  e.  U )
 
Theoremwundm 8352 A weak universe is closed under the domain operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  dom 
 A  e.  U )
 
Theoremwunrn 8353 A weak universe is closed under the range operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  ran 
 A  e.  U )
 
Theoremwuncnv 8354 A weak universe is closed under the converse operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  `' A  e.  U )
 
Theoremwunres 8355 A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  ( A  |`  B )  e.  U )
 
Theoremwunfv 8356 A weak universe is closed under the function value operator. (Contributed by Mario Carneiro, 3-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  ( A `  B )  e.  U )
 
Theoremwunco 8357 A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  U )   =>    |-  ( ph  ->  ( A  o.  B )  e.  U )
 
Theoremwuntpos 8358 A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.)
 |-  ( ph  ->  U  e. WUni )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  -> tpos  A  e.  U )
 
Theoremintwun 8359 The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ( A  C_ WUni  /\  A  =/=  (/) )  ->  |^| A  e. WUni )
 
Theoremr1limwun 8360 Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ( A  e.  V  /\  Lim  A )  ->  ( R1 `  A )  e. WUni )
 
Theoremr1wunlim 8361 The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( A  e.  V  ->  ( ( R1 `  A )  e. WUni  <->  Lim  A ) )
 
Theoremwunex2 8362* Construct a weak universe from a given set. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  F  =  ( rec ( ( z  e. 
 _V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )   &    |-  U  =  U. ran  F   =>    |-  ( A  e.  V  ->  ( U  e. WUni  /\  A  C_  U ) )
 
Theoremwunex 8363* Construct a weak universe from a given set. See also wunex2 8362. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( A  e.  V  ->  E. u  e. WUni  A  C_  u )
 
Theoremuniwun 8364 Every set is contained in a weak universe. This is the analogue of grothtsk 8459, but it is provable in ZFC without the Tarski-Grothendieck axiom. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |- 
 U.WUni  =  _V
 
Theoremwunex3 8365 Construct a weak universe from a given set. This version of wunex 8363 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  U  =  ( R1
 `  ( ( rank `  A )  +o  om ) )   =>    |-  ( A  e.  V  ->  ( U  e. WUni  /\  A  C_  U ) )
 
Theoremwuncval 8366* Value of the weak universe closure operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( A  e.  V  ->  (wUniCl `  A )  =  |^| { u  e. WUni  |  A  C_  u }
 )
 
Theoremwuncid 8367 The weak universe closure of a set contains the set. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( A  e.  V  ->  A  C_  (wUniCl `  A ) )
 
Theoremwunccl 8368 The weak universe closure of a set is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( A  e.  V  ->  (wUniCl `  A )  e. WUni )
 
Theoremwuncss 8369 The weak universe closure is a subset of any other weak universe containing the set. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ( U  e. WUni  /\  A  C_  U )  ->  (wUniCl `  A )  C_  U )
 
Theoremwuncidm 8370 The weak universe closure is idempotent. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( A  e.  V  ->  (wUniCl `  (wUniCl `  A ) )  =  (wUniCl `  A ) )
 
Theoremwuncval2 8371* Our earlier expression for a containing weak universe is in fact the weak universe closure. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  F  =  ( rec ( ( z  e. 
 _V  |->  ( ( z  u.  U. z )  u.  U_ x  e.  z  ( { ~P x ,  U. x }  u.  ran  ( y  e.  z  |->  { x ,  y } ) ) ) ) ,  ( A  u.  1o ) )  |`  om )   &    |-  U  =  U. ran  F   =>    |-  ( A  e.  V  ->  (wUniCl `  A )  =  U )
 
4.1.3  Tarski's classes
 
Syntaxctsk 8372 Extend class definition to include the class of all Tarski's classes.
 class  Tarski
 
Definitiondf-tsk 8373* The class of all Tarski's classes. Tarski's classes is a phrase coined by Grzegorz Bancerek in his article "Tarski's Classes and Ranks" Journal of Formalized Mathematics. Vol 1 no 3 May-August 1990. A Tarski's class is a set whose existence is ensured by Tarski's axiom A (see ax-groth 8447 and the equivalent axioms). Axiom A was first presented in Tarski's article: "Über unerreichbare Kardinalzahlen". Tarski had invented the axiom A to enable ZFC to manage inaccessible cardinals. Later Grothendieck invented the concept of Grothendieck's universes and showed they were equal to transitive Tarski's classes. (Contributed by FL, 30-Dec-2010.)
 |-  Tarski  =  { y  |  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
 ( z  ~~  y  \/  z  e.  y
 ) ) }
 
Theoremeltskg 8374* Properties of a Tarski's class. (Contributed by FL, 30-Dec-2010.)
 |-  ( T  e.  V  ->  ( T  e.  Tarski  <->  ( A. z  e.  T  ( ~P z  C_  T  /\  E. w  e.  T  ~P z  C_  w ) 
 /\  A. z  e.  ~P  T ( z  ~~  T  \/  z  e.  T ) ) ) )
 
Theoremeltsk2g 8375* Properties of a Tarski's class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
 |-  ( T  e.  V  ->  ( T  e.  Tarski  <->  ( A. z  e.  T  ( ~P z  C_  T  /\  ~P z  e.  T )  /\  A. z  e. 
 ~P  T ( z 
 ~~  T  \/  z  e.  T ) ) ) )
 
Theoremtskpwss 8376 1st axiom of a Tarski's class. The subsets of an element of a Tarski's class belong to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
 |-  ( ( T  e.  Tarski  /\  A  e.  T ) 
 ->  ~P A  C_  T )
 
Theoremtskpw 8377 2nd axiom of a Tarski's class. The powerset of an element of a Tarski's class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
 |-  ( ( T  e.  Tarski  /\  A  e.  T ) 
 ->  ~P A  e.  T )
 
Theoremtsken 8378 3rd axiom of a Tarski's class. A subset of a Tarski's class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
 |-  ( ( T  e.  Tarski  /\  A  C_  T )  ->  ( A  ~~  T  \/  A  e.  T ) )
 
Theorem0tsk 8379 The empty set is a (transitive) Tarski's class. (Contributed by FL, 30-Dec-2010.)
 |-  (/)  e.  Tarski
 
Theoremtsksdom 8380 An element of a Tarski's class is strictly dominated by the class. JFM CLASSES2 th. 1 (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.)
 |-  ( ( T  e.  Tarski  /\  A  e.  T ) 
 ->  A  ~<  T )
 
Theoremtskssel 8381 A part of a Tarski's class strictly dominated by the class is an element of the class. JFM CLASSES2 th. 2. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
 |-  ( ( T  e.  Tarski  /\  A  C_  T  /\  A  ~<  T )  ->  A  e.  T )
 
Theoremtskss 8382 The subsets of an element of a Tarski's class belong to the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.)
 |-  ( ( T  e.  Tarski  /\  A  e.  T  /\  B  C_  A )  ->  B  e.  T )
 
Theoremtskin 8383 The intersection of two elements of a Tarski's class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
 |-  ( ( T  e.  Tarski  /\  A  e.  T ) 
 ->  ( A  i^i  B )  e.  T )
 
Theoremtsksn 8384 A singleton of an element of a Tarski's class belongs to the class. JFM CLASSES2 th. 2 (partly) (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.)
 |-  ( ( T  e.  Tarski  /\  A  e.  T ) 
 ->  { A }  e.  T )
 
Theoremtsktrss 8385 A transitive element of a Tarski's class is a part of the class. JFM CLASSES2 th. 8 (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 20-Sep-2014.)
 |-  ( ( T  e.  Tarski  /\ 
 Tr  A  /\  A  e.  T )  ->  A  C_  T )
 
Theoremtsksuc 8386 If an element of a Tarski's class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
 |-  ( ( T  e.  Tarski  /\  A  e.  On  /\  A  e.  T )  ->  suc  A  e.  T )
 
Theoremtsk0 8387 A non-empty Tarski's class contains the empty set. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.)
 |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  (/) 
 e.  T )
 
Theoremtsk1 8388 One is an element of a non-empty Tarski's class. (Contributed by FL, 22-Feb-2011.)
 |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  1o  e.  T )
 
Theoremtsk2 8389 Two is an element of a non-empty Tarski's class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
 |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  2o  e.  T )
 
Theorem2domtsk 8390 If a Tarski's class is not empty, it has more than two elements. (Contributed by FL, 22-Feb-2011.)
 |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  2o  ~<  T )
 
Theoremtskr1om 8391 A nonempty Tarski's class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf 7341.) (Contributed by Mario Carneiro, 24-Jun-2013.)
 |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( R1 " om )  C_  T )
 
Theoremtskr1om2 8392 A nonempty Tarski's class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 7341.) (Contributed by NM, 22-Feb-2011.)
 |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  U. ( R1 " om )  C_  T )
 
Theoremtskinf 8393 A nonempty Tarski's class is infinite. (Contributed by FL, 22-Feb-2011.)
 |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  om 
 ~<_  T )
 
Theoremtskpr 8394 If  A and  B are members of a Tarski's class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.)
 |-  ( ( T  e.  Tarski  /\  A  e.  T  /\  B  e.  T )  ->  { A ,  B }  e.  T )
 
Theoremtskop 8395 If  A and  B are members of a Tarski's class, their ordered pair is also an element of the class. JFM CLASSES2 th. 4. (Contributed by FL, 22-Feb-2011.)
 |-  ( ( T  e.  Tarski  /\  A  e.  T  /\  B  e.  T )  -> 
 <. A ,  B >.  e.  T )
 
Theoremtskxpss 8396 A cross product of two parts of a Tarski's class is a part of the class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Jun-2013.)
 |-  ( ( T  e.  Tarski  /\  A  C_  T  /\  B  C_  T )  ->  ( A  X.  B ) 
 C_  T )
 
Theoremtskwe2 8397 A Tarski's class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013.)
 |-  ( T  e.  Tarski  ->  T  e.  dom  card )
 
Theoreminttsk 8398 The intersection of a collection of Tarski's classes is a Tarski's class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
 |-  ( ( A  C_  Tarski  /\  A  =/=  (/) )  ->  |^| A  e.  Tarski )
 
Theoreminar1 8399  ( R1 `  A ) for  A a strongly inaccessible cardinal is equipotent to  A. (Contributed by Mario Carneiro, 6-Jun-2013.)
 |-  ( A  e.  Inacc  ->  ( R1 `  A ) 
 ~~  A )
 
Theoremr1omALT 8400 The set of hereditarily finite sets is countable. This is a short proof as a consequence of inar1 8399, which requires AC. See r1om 7872 for a direct proof not requiring AC. (Contributed by Mario Carneiro, 27-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( R1 `  om )  ~~  om
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32227
  Copyright terms: Public domain < Previous  Next >