HomeHome Metamath Proof Explorer
Theorem List (p. 94 of 328)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-22421)
  Hilbert Space Explorer  Hilbert Space Explorer
(22422-23944)
  Users' Mathboxes  Users' Mathboxes
(23945-32762)
 

Theorem List for Metamath Proof Explorer - 9301-9400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnfnegd 9301 Deduction version of nfneg 9302. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   =>    |-  ( ph  ->  F/_ x -u A )
 
Theoremnfneg 9302 Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x -u A
 
Theoremcsbnegg 9303 Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ -u B  =  -u [_ A  /  x ]_ B )
 
Theoremnegex 9304 A negative is a set. (Contributed by NM, 4-Apr-2005.)
 |-  -u A  e.  _V
 
Theoremsubcl 9305 Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B )  e.  CC )
 
Theoremnegcl 9306 Closure law for negative. (Contributed by NM, 6-Aug-2003.)
 |-  ( A  e.  CC  -> 
 -u A  e.  CC )
 
Theoremsubf 9307 Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
 |- 
 -  : ( CC 
 X.  CC ) --> CC
 
Theoremsubadd 9308 Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  C  <->  ( B  +  C )  =  A ) )
 
Theoremsubadd2 9309 Relationship between subtraction and addition. (Contributed by Scott Fenton, 5-Jul-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  C  <->  ( C  +  B )  =  A ) )
 
Theoremsubsub23 9310 Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  C  <->  ( A  -  C )  =  B ) )
 
Theorempncan 9311 Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B )  =  A )
 
Theorempncan2 9312 Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  A )  =  B )
 
Theorempncan3 9313 Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
 
Theoremnpcan 9314 Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  B )  =  A )
 
Theoremaddsubass 9315 Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  C )  =  ( A  +  ( B  -  C ) ) )
 
Theoremaddsub 9316 Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  C )  =  ( ( A  -  C )  +  B ) )
 
Theoremsubadd23 9317 Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  C )  =  ( A  +  ( C  -  B ) ) )
 
Theoremaddsub12 9318 Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  -  C ) )  =  ( B  +  ( A  -  C ) ) )
 
Theorem2addsub 9319 Law for subtraction and addition. (Contributed by NM, 20-Nov-2005.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( ( A  +  B )  +  C )  -  D )  =  ( (
 ( A  +  C )  -  D )  +  B ) )
 
Theoremaddsubeq4 9320 Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  =  ( C  +  D )  <->  ( C  -  A )  =  ( B  -  D ) ) )
 
Theoremsubid 9321 Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  -  A )  =  0 )
 
Theoremsubid1 9322 Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  -  0
 )  =  A )
 
Theoremnpncan 9323 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( B  -  C ) )  =  ( A  -  C ) )
 
Theoremnppcan 9324 Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( ( A  -  B )  +  C )  +  B )  =  ( A  +  C ) )
 
Theoremnppcan3 9325 Cancellation law for subtraction. (Contributed by Mario Carneiro, 14-Sep-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( C  +  B )
 )  =  ( A  +  C ) )
 
Theoremsubcan2 9326 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  C )  =  ( B  -  C )  <->  A  =  B ) )
 
Theoremsubeq0 9327 If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  0  <->  A  =  B ) )
 
Theoremnpncan2 9328 Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  +  ( B  -  A ) )  =  0
 )
 
Theoremsubsub2 9329 Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )
 
Theoremnncan 9330 Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( A  -  B ) )  =  B )
 
Theoremsubsub 9331 Law for double subtraction. (Contributed by NM, 13-May-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( ( A  -  B )  +  C ) )
 
Theoremnppcan2 9332 Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  ( B  +  C ) )  +  C )  =  ( A  -  B ) )
 
Theoremsubsub3 9333 Law for double subtraction. (Contributed by NM, 27-Jul-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( ( A  +  C )  -  B ) )
 
Theoremsubsub4 9334 Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  C )  =  ( A  -  ( B  +  C ) ) )
 
Theoremsub32 9335 Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  C )  =  ( ( A  -  C )  -  B ) )
 
Theoremnnncan 9336 Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  ( B  -  C ) )  -  C )  =  ( A  -  B ) )
 
Theoremnnncan1 9337 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  -  ( A  -  C ) )  =  ( C  -  B ) )
 
Theoremnnncan2 9338 Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  C )  -  ( B  -  C ) )  =  ( A  -  B ) )
 
Theoremnpncan3 9339 Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  +  ( C  -  A ) )  =  ( C  -  B ) )
 
Theorempnpcan 9340 Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  ( A  +  C )
 )  =  ( B  -  C ) )
 
Theorempnpcan2 9341 Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  C )  -  ( B  +  C )
 )  =  ( A  -  B ) )
 
Theorempnncan 9342 Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  -  ( A  -  C ) )  =  ( B  +  C ) )
 
Theoremppncan 9343 Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  ( C  -  B ) )  =  ( A  +  C ) )
 
Theoremaddsub4 9344 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  -  ( C  +  D )
 )  =  ( ( A  -  C )  +  ( B  -  D ) ) )
 
Theoremsubadd4 9345 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 24-Aug-2006.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  -  ( C  -  D ) )  =  ( ( A  +  D )  -  ( B  +  C ) ) )
 
Theoremsub4 9346 Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  -  B )  -  ( C  -  D ) )  =  ( ( A  -  C )  -  ( B  -  D ) ) )
 
Theoremneg0 9347 Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.)
 |-  -u 0  =  0
 
Theoremnegid 9348 Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.)
 |-  ( A  e.  CC  ->  ( A  +  -u A )  =  0 )
 
Theoremnegsub 9349 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
 
Theoremsubneg 9350 Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  -u B )  =  ( A  +  B ) )
 
Theoremnegneg 9351 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 12-Jan-2002.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  -> 
 -u -u A  =  A )
 
Theoremneg11 9352 Negative is one-to-one. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  =  -u B  <->  A  =  B ) )
 
Theoremnegcon1 9353 Negative contraposition law. (Contributed by NM, 9-May-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  =  B  <->  -u B  =  A ) )
 
Theoremnegcon2 9354 Negative contraposition law. (Contributed by NM, 14-Nov-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  -u B  <->  B  =  -u A ) )
 
Theoremnegeq0 9355 A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  ( A  =  0  <->  -u A  =  0 ) )
 
Theoremsubcan 9356 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  B )  =  ( A  -  C )  <->  B  =  C ) )
 
Theoremnegsubdi 9357 Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  -  B )  =  ( -u A  +  B ) )
 
Theoremnegdi 9358 Distribution of negative over addition. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  +  B )  =  ( -u A  +  -u B ) )
 
Theoremnegdi2 9359 Distribution of negative over addition. (Contributed by NM, 1-Jan-2006.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  +  B )  =  ( -u A  -  B ) )
 
Theoremnegsubdi2 9360 Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  -u ( A  -  B )  =  ( B  -  A ) )
 
Theoremneg2sub 9361 Relationship between subtraction and negative. (Contributed by Paul Chapman, 8-Oct-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  -  -u B )  =  ( B  -  A ) )
 
Theoremrenegcli 9362 Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 9364 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  RR   =>    |-  -u A  e.  RR
 
Theoremresubcli 9363 Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  -  B )  e.  RR
 
Theoremrenegcl 9364 Closure law for negative of reals. The weak deduction theorem dedth 3780 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 9362, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.)
 |-  ( A  e.  RR  -> 
 -u A  e.  RR )
 
Theoremresubcl 9365 Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B )  e.  RR )
 
Theoremnegreb 9366 The negative of a real is real. (Contributed by NM, 11-Aug-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( -u A  e.  RR  <->  A  e.  RR ) )
 
Theorempeano2rem 9367 "Reverse" second Peano postulate analog for reals. (Contributed by NM, 6-Feb-2007.)
 |-  ( N  e.  RR  ->  ( N  -  1
 )  e.  RR )
 
Theoremnegcli 9368 Closure law for negative. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   =>    |-  -u A  e.  CC
 
Theoremnegidi 9369 Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   =>    |-  ( A  +  -u A )  =  0
 
Theoremnegnegi 9370 A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  CC   =>    |-  -u -u A  =  A
 
Theoremsubidi 9371 Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   =>    |-  ( A  -  A )  =  0
 
Theoremsubid1i 9372 Identity law for subtraction. (Contributed by NM, 29-May-1999.)
 |-  A  e.  CC   =>    |-  ( A  -  0 )  =  A
 
Theoremnegne0bi 9373 A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( A  =/=  0 
 <->  -u A  =/=  0
 )
 
Theoremnegrebi 9374 The negative of a real is real. (Contributed by NM, 11-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( -u A  e.  RR  <->  A  e.  RR )
 
Theoremnegne0i 9375 The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004.)
 |-  A  e.  CC   &    |-  A  =/=  0   =>    |-  -u A  =/=  0
 
Theoremsubcli 9376 Closure law for subtraction. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  -  B )  e.  CC
 
Theorempncan3i 9377 Subtraction and addition of equals. (Contributed by NM, 26-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  +  ( B  -  A ) )  =  B
 
Theoremnegsubi 9378 Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 26-Nov-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  +  -u B )  =  ( A  -  B )
 
Theoremsubnegi 9379 Relationship between subtraction and negative. (Contributed by NM, 1-Dec-2005.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  -  -u B )  =  ( A  +  B )
 
Theoremsubeq0i 9380 If the difference between two numbers is zero, they are equal. (Contributed by NM, 8-May-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( ( A  -  B )  =  0  <->  A  =  B )
 
Theoremneg11i 9381 Negative is one-to-one. (Contributed by NM, 1-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( -u A  =  -u B 
 <->  A  =  B )
 
Theoremnegcon1i 9382 Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( -u A  =  B  <->  -u B  =  A )
 
Theoremnegcon2i 9383 Negative contraposition law. (Contributed by NM, 25-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  =  -u B 
 <->  B  =  -u A )
 
Theoremnegdii 9384 Distribution of negative over addition. (Contributed by NM, 28-Jul-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  -u ( A  +  B )  =  ( -u A  +  -u B )
 
Theoremnegsubdii 9385 Distribution of negative over subtraction. (Contributed by NM, 6-Aug-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  -u ( A  -  B )  =  ( -u A  +  B )
 
Theoremnegsubdi2i 9386 Distribution of negative over subtraction. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  -u ( A  -  B )  =  ( B  -  A )
 
Theoremsubaddi 9387 Relationship between subtraction and addition. (Contributed by NM, 26-Nov-1994.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  C  <->  ( B  +  C )  =  A )
 
Theoremsubadd2i 9388 Relationship between subtraction and addition. (Contributed by NM, 15-Dec-2006.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  C  <->  ( C  +  B )  =  A )
 
Theoremsubaddrii 9389 Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  ( B  +  C )  =  A   =>    |-  ( A  -  B )  =  C
 
Theoremsubsub23i 9390 Swap subtrahend and result of subtraction. (Contributed by NM, 7-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  C  <->  ( A  -  C )  =  B )
 
Theoremaddsubassi 9391 Associative-type law for subtraction and addition. (Contributed by NM, 16-Sep-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  -  C )  =  ( A  +  ( B  -  C ) )
 
Theoremaddsubi 9392 Law for subtraction and addition. (Contributed by NM, 6-Aug-2003.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  -  C )  =  ( ( A  -  C )  +  B )
 
Theoremsubcani 9393 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  B )  =  ( A  -  C )  <->  B  =  C )
 
Theoremsubcan2i 9394 Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  -  C )  =  ( B  -  C )  <->  A  =  B )
 
Theorempnncani 9395 Cancellation law for mixed addition and subtraction. (Contributed by NM, 14-Jan-2006.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  -  ( A  -  C ) )  =  ( B  +  C )
 
Theoremaddsub4i 9396 Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 17-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  D  e.  CC   =>    |-  ( ( A  +  B )  -  ( C  +  D )
 )  =  ( ( A  -  C )  +  ( B  -  D ) )
 
Theorem0reALT 9397 0 is a real number. (Contributed by NM, 19-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  0  e.  RR
 
Theoremnegcld 9398 Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  -u A  e.  CC )
 
Theoremsubidd 9399 Subtraction of a number from itself. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  -  A )  =  0 )
 
Theoremsubid1d 9400 Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  -  0 )  =  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32762
  Copyright terms: Public domain < Previous  Next >