MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndideu Unicode version

Theorem mndideu 14302
Description: The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
mndlem1.b  |-  B  =  ( Base `  G
)
mndlem1.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mndideu  |-  ( G  e.  Mnd  ->  E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x ) )
Distinct variable groups:    x, u, B    u, G, x    u,  .+ , x

Proof of Theorem mndideu
StepHypRef Expression
1 mndlem1.b . . 3  |-  B  =  ( Base `  G
)
2 mndlem1.p . . 3  |-  .+  =  ( +g  `  G )
31, 2mndid 14301 . 2  |-  ( G  e.  Mnd  ->  E. u  e.  B  A. x  e.  B  ( (
u  .+  x )  =  x  /\  (
x  .+  u )  =  x ) )
4 mgmidmo 14297 . . 3  |-  E* u
( u  e.  B  /\  A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x ) )
54a1i 12 . 2  |-  ( G  e.  Mnd  ->  E* u ( u  e.  B  /\  A. x  e.  B  ( (
u  .+  x )  =  x  /\  (
x  .+  u )  =  x ) ) )
6 reu5 2905 . 2  |-  ( E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  <->  ( E. u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  /\  E* u ( u  e.  B  /\  A. x  e.  B  ( (
u  .+  x )  =  x  /\  (
x  .+  u )  =  x ) ) ) )
73, 5, 6sylanbrc 648 1  |-  ( G  e.  Mnd  ->  E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   E*wmo 2118   A.wral 2516   E.wrex 2517   E!wreu 2518   ` cfv 4638  (class class class)co 5757   Basecbs 13075   +g cplusg 13135   Mndcmnd 14288
This theorem is referenced by:  grpideu  14425  rngideu  15285
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-xp 4640  df-cnv 4642  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fv 4654  df-ov 5760  df-mnd 14294
  Copyright terms: Public domain W3C validator