MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndideu Unicode version

Theorem mndideu 14686
Description: The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by Mario Carneiro, 8-Dec-2014.)
Hypotheses
Ref Expression
mndlem1.b  |-  B  =  ( Base `  G
)
mndlem1.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mndideu  |-  ( G  e.  Mnd  ->  E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x ) )
Distinct variable groups:    x, u, B    u, G, x    u,  .+ , x

Proof of Theorem mndideu
StepHypRef Expression
1 mndlem1.b . . 3  |-  B  =  ( Base `  G
)
2 mndlem1.p . . 3  |-  .+  =  ( +g  `  G )
31, 2mndid 14685 . 2  |-  ( G  e.  Mnd  ->  E. u  e.  B  A. x  e.  B  ( (
u  .+  x )  =  x  /\  (
x  .+  u )  =  x ) )
4 mgmidmo 14681 . . 3  |-  E* u  e.  B A. x  e.  B  ( ( u 
.+  x )  =  x  /\  ( x 
.+  u )  =  x )
54a1i 11 . 2  |-  ( G  e.  Mnd  ->  E* u  e.  B A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x ) )
6 reu5 2913 . 2  |-  ( E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  <->  ( E. u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x )  /\  E* u  e.  B A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x ) ) )
73, 5, 6sylanbrc 646 1  |-  ( G  e.  Mnd  ->  E! u  e.  B  A. x  e.  B  (
( u  .+  x
)  =  x  /\  ( x  .+  u )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   E!wreu 2699   E*wrmo 2700   ` cfv 5445  (class class class)co 6072   Basecbs 13457   +g cplusg 13517   Mndcmnd 14672
This theorem is referenced by:  grpideu  14809  rngideu  15669
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-nul 4330  ax-pow 4369
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5409  df-fv 5453  df-ov 6075  df-mnd 14678
  Copyright terms: Public domain W3C validator