MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mo3 Structured version   Unicode version

Theorem mo3 2311
Description: Alternate definition of "at most one." Definition of [BellMachover] p. 460, except that definition has the side condition that  y not occur in  ph in place of our hypothesis. (Contributed by NM, 8-Mar-1995.)
Hypothesis
Ref Expression
mo3.1  |-  F/ y
ph
Assertion
Ref Expression
mo3  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem mo3
StepHypRef Expression
1 mo3.1 . . 3  |-  F/ y
ph
21mo2 2309 . 2  |-  ( E* x ph  <->  E. y A. x ( ph  ->  x  =  y ) )
31mo 2302 . 2  |-  ( E. y A. x (
ph  ->  x  =  y )  <->  A. x A. y
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
42, 3bitri 241 1  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550   F/wnf 1553   [wsb 1658   E*wmo 2281
This theorem is referenced by:  mo4f  2312  mopick  2342  rmo3  3240  isarep2  5525  mo5f  23964  rmo3f  23974  rmo4fOLD  23975  pm14.12  27589  bnj580  29221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285
  Copyright terms: Public domain W3C validator