Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mo5f Structured version   Unicode version

Theorem mo5f 23962
Description: Alternate definition of "at most one." (Contributed by Thierry Arnoux, 1-Mar-2017.)
Hypotheses
Ref Expression
mo5f.1  |-  F/ i
ph
mo5f.2  |-  F/ j
ph
Assertion
Ref Expression
mo5f  |-  ( E* x ph  <->  A. i A. j ( ( [ i  /  x ] ph  /\  [ j  /  x ] ph )  -> 
i  =  j ) )
Distinct variable group:    i, j, x
Allowed substitution hints:    ph( x, i, j)

Proof of Theorem mo5f
StepHypRef Expression
1 mo5f.2 . . 3  |-  F/ j
ph
21mo3 2311 . 2  |-  ( E* x ph  <->  A. x A. j ( ( ph  /\ 
[ j  /  x ] ph )  ->  x  =  j ) )
3 mo5f.1 . . . . . 6  |-  F/ i
ph
43nfsb 2184 . . . . . 6  |-  F/ i [ j  /  x ] ph
53, 4nfan 1846 . . . . 5  |-  F/ i ( ph  /\  [
j  /  x ] ph )
6 nfv 1629 . . . . 5  |-  F/ i  x  =  j
75, 6nfim 1832 . . . 4  |-  F/ i ( ( ph  /\  [ j  /  x ] ph )  ->  x  =  j )
87nfal 1864 . . 3  |-  F/ i A. j ( (
ph  /\  [ j  /  x ] ph )  ->  x  =  j )
98sb8 2167 . 2  |-  ( A. x A. j ( (
ph  /\  [ j  /  x ] ph )  ->  x  =  j )  <->  A. i [ i  /  x ] A. j ( ( ph  /\  [
j  /  x ] ph )  ->  x  =  j ) )
10 sbim 2121 . . . . 5  |-  ( [ i  /  x ]
( ( ph  /\  [ j  /  x ] ph )  ->  x  =  j )  <->  ( [
i  /  x ]
( ph  /\  [ j  /  x ] ph )  ->  [ i  /  x ] x  =  j ) )
11 sban 2143 . . . . . . 7  |-  ( [ i  /  x ]
( ph  /\  [ j  /  x ] ph ) 
<->  ( [ i  /  x ] ph  /\  [
i  /  x ] [ j  /  x ] ph ) )
12 nfs1v 2181 . . . . . . . . . 10  |-  F/ x [ j  /  x ] ph
1312sbf 2105 . . . . . . . . 9  |-  ( [ i  /  x ] [ j  /  x ] ph  <->  [ j  /  x ] ph )
1413bicomi 194 . . . . . . . 8  |-  ( [ j  /  x ] ph 
<->  [ i  /  x ] [ j  /  x ] ph )
1514anbi2i 676 . . . . . . 7  |-  ( ( [ i  /  x ] ph  /\  [ j  /  x ] ph ) 
<->  ( [ i  /  x ] ph  /\  [
i  /  x ] [ j  /  x ] ph ) )
1611, 15bitr4i 244 . . . . . 6  |-  ( [ i  /  x ]
( ph  /\  [ j  /  x ] ph ) 
<->  ( [ i  /  x ] ph  /\  [
j  /  x ] ph ) )
17 equsb3 2177 . . . . . 6  |-  ( [ i  /  x ]
x  =  j  <->  i  =  j )
1816, 17imbi12i 317 . . . . 5  |-  ( ( [ i  /  x ] ( ph  /\  [ j  /  x ] ph )  ->  [ i  /  x ] x  =  j )  <->  ( ( [ i  /  x ] ph  /\  [ j  /  x ] ph )  ->  i  =  j ) )
1910, 18bitri 241 . . . 4  |-  ( [ i  /  x ]
( ( ph  /\  [ j  /  x ] ph )  ->  x  =  j )  <->  ( ( [ i  /  x ] ph  /\  [ j  /  x ] ph )  ->  i  =  j ) )
2019sbalv 2205 . . 3  |-  ( [ i  /  x ] A. j ( ( ph  /\ 
[ j  /  x ] ph )  ->  x  =  j )  <->  A. j
( ( [ i  /  x ] ph  /\ 
[ j  /  x ] ph )  ->  i  =  j ) )
2120albii 1575 . 2  |-  ( A. i [ i  /  x ] A. j ( (
ph  /\  [ j  /  x ] ph )  ->  x  =  j )  <->  A. i A. j ( ( [ i  /  x ] ph  /\  [
j  /  x ] ph )  ->  i  =  j ) )
222, 9, 213bitri 263 1  |-  ( E* x ph  <->  A. i A. j ( ( [ i  /  x ] ph  /\  [ j  /  x ] ph )  -> 
i  =  j ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   F/wnf 1553   [wsb 1658   E*wmo 2281
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285
  Copyright terms: Public domain W3C validator