MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnval Unicode version

Theorem mopnval 17980
Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object  ( MetOpen `  D
) is the family of all open sets in the metric space determined by the metric  D. By mopntop 17982, the open sets of a metric space form a topology 
J, whose base set is 
U. J by mopnuni 17983. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
mopnval  |-  ( D  e.  ( * Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )

Proof of Theorem mopnval
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 fvssunirn 5513 . . 3  |-  ( * Met `  X ) 
C_  U. ran  * Met
21sseli 3177 . 2  |-  ( D  e.  ( * Met `  X )  ->  D  e.  U. ran  * Met )
3 mopnval.1 . . 3  |-  J  =  ( MetOpen `  D )
4 fveq2 5486 . . . . . 6  |-  ( d  =  D  ->  ( ball `  d )  =  ( ball `  D
) )
54rneqd 4905 . . . . 5  |-  ( d  =  D  ->  ran  ( ball `  d )  =  ran  ( ball `  D
) )
65fveq2d 5490 . . . 4  |-  ( d  =  D  ->  ( topGen `
 ran  ( ball `  d ) )  =  ( topGen `  ran  ( ball `  D ) ) )
7 df-mopn 16372 . . . 4  |-  MetOpen  =  ( d  e.  U. ran  * Met  |->  ( topGen `  ran  ( ball `  d )
) )
8 fvex 5500 . . . 4  |-  ( topGen ` 
ran  ( ball `  D
) )  e.  _V
96, 7, 8fvmpt 5564 . . 3  |-  ( D  e.  U. ran  * Met  ->  ( MetOpen `  D
)  =  ( topGen ` 
ran  ( ball `  D
) ) )
103, 9syl5eq 2328 . 2  |-  ( D  e.  U. ran  * Met  ->  J  =  (
topGen `  ran  ( ball `  D ) ) )
112, 10syl 15 1  |-  ( D  e.  ( * Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1685   U.cuni 3828   ran crn 4689   ` cfv 5221   topGenctg 13338   * Metcxmt 16365   ballcbl 16367   MetOpencmopn 16368
This theorem is referenced by:  mopntopon  17981  elmopn  17984  imasf1oxms  18031  blssopn  18037  metss  18050  prdsxmslem2  18071  metcnp3  18082  tgioo  18298  ismtyhmeolem  25939
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fv 5229  df-mopn 16372
  Copyright terms: Public domain W3C validator