MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnval Unicode version

Theorem mopnval 17947
Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object  ( MetOpen `  D
) is the family of all open sets in the metric space determined by the metric  D. By mopntop 17949, the open sets of a metric space form a topology 
J, whose base set is 
U. J by mopnuni 17950. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
mopnval  |-  ( D  e.  ( * Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )

Proof of Theorem mopnval
StepHypRef Expression
1 fvssunirn 5485 . . 3  |-  ( * Met `  X ) 
C_  U. ran  * Met
21sseli 3151 . 2  |-  ( D  e.  ( * Met `  X )  ->  D  e.  U. ran  * Met )
3 mopnval.1 . . 3  |-  J  =  ( MetOpen `  D )
4 fveq2 5458 . . . . . 6  |-  ( d  =  D  ->  ( ball `  d )  =  ( ball `  D
) )
54rneqd 4894 . . . . 5  |-  ( d  =  D  ->  ran  ( ball `  d )  =  ran  ( ball `  D
) )
65fveq2d 5462 . . . 4  |-  ( d  =  D  ->  ( topGen `
 ran  ( ball `  d ) )  =  ( topGen `  ran  ( ball `  D ) ) )
7 df-mopn 16339 . . . 4  |-  MetOpen  =  ( d  e.  U. ran  * Met  |->  ( topGen `  ran  ( ball `  d )
) )
8 fvex 5472 . . . 4  |-  ( topGen ` 
ran  ( ball `  D
) )  e.  _V
96, 7, 8fvmpt 5536 . . 3  |-  ( D  e.  U. ran  * Met  ->  ( MetOpen `  D
)  =  ( topGen ` 
ran  ( ball `  D
) ) )
103, 9syl5eq 2302 . 2  |-  ( D  e.  U. ran  * Met  ->  J  =  (
topGen `  ran  ( ball `  D ) ) )
112, 10syl 17 1  |-  ( D  e.  ( * Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   U.cuni 3801   ran crn 4662   ` cfv 4673   topGenctg 13305   * Metcxmt 16332   ballcbl 16334   MetOpencmopn 16335
This theorem is referenced by:  mopntopon  17948  elmopn  17951  imasf1oxms  17998  blssopn  18004  metss  18017  prdsxmslem2  18038  metcnp3  18049  tgioo  18265  ismtyhmeolem  25896
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fv 4689  df-mopn 16339
  Copyright terms: Public domain W3C validator