MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe1 Structured version   Unicode version

Theorem mplcoe1 16520
Description: Decompose a polynomial into a finite sum of monomials. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplcoe1.p  |-  P  =  ( I mPoly  R )
mplcoe1.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplcoe1.z  |-  .0.  =  ( 0g `  R )
mplcoe1.o  |-  .1.  =  ( 1r `  R )
mplcoe1.i  |-  ( ph  ->  I  e.  W )
mplcoe1.b  |-  B  =  ( Base `  P
)
mplcoe1.n  |-  .x.  =  ( .s `  P )
mplcoe1.r  |-  ( ph  ->  R  e.  Ring )
mplcoe1.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
mplcoe1  |-  ( ph  ->  X  =  ( P 
gsumg  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
Distinct variable groups:    y, k,  .1.    B, k    f, k, y, I    ph, k,
y    R, f, y    D, k, y    P, k    k, W    .0. , f, k, y   
f, X, k, y    .x. , k
Allowed substitution hints:    ph( f)    B( y, f)    D( f)    P( y, f)    R( k)    .x. ( y,
f)    .1. ( f)    W( y,
f)

Proof of Theorem mplcoe1
Dummy variables  w  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe1.p . . . . . 6  |-  P  =  ( I mPoly  R )
2 eqid 2435 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
3 mplcoe1.b . . . . . 6  |-  B  =  ( Base `  P
)
4 mplcoe1.d . . . . . 6  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
5 mplcoe1.x . . . . . 6  |-  ( ph  ->  X  e.  B )
61, 2, 3, 4, 5mplelf 16489 . . . . 5  |-  ( ph  ->  X : D --> ( Base `  R ) )
76feqmptd 5771 . . . 4  |-  ( ph  ->  X  =  ( y  e.  D  |->  ( X `
 y ) ) )
8 iftrue 3737 . . . . . . 7  |-  ( y  e.  ( `' X " ( _V  \  {  .0.  } ) )  ->  if ( y  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ,  ( X `  y ) ,  .0.  )  =  ( X `  y
) )
98adantl 453 . . . . . 6  |-  ( ( ( ph  /\  y  e.  D )  /\  y  e.  ( `' X "
( _V  \  {  .0.  } ) ) )  ->  if ( y  e.  ( `' X " ( _V  \  {  .0.  } ) ) ,  ( X `  y
) ,  .0.  )  =  ( X `  y ) )
10 eldif 3322 . . . . . . . 8  |-  ( y  e.  ( D  \ 
( `' X "
( _V  \  {  .0.  } ) ) )  <-> 
( y  e.  D  /\  -.  y  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ) )
11 ifid 3763 . . . . . . . . 9  |-  if ( y  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ,  ( X `  y ) ,  ( X `  y ) )  =  ( X `  y
)
12 ssid 3359 . . . . . . . . . . . 12  |-  ( `' X " ( _V 
\  {  .0.  }
) )  C_  ( `' X " ( _V 
\  {  .0.  }
) )
1312a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( `' X "
( _V  \  {  .0.  } ) )  C_  ( `' X " ( _V 
\  {  .0.  }
) ) )
146, 13suppssr 5856 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( D  \  ( `' X " ( _V 
\  {  .0.  }
) ) ) )  ->  ( X `  y )  =  .0.  )
1514ifeq2d 3746 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( D  \  ( `' X " ( _V 
\  {  .0.  }
) ) ) )  ->  if ( y  e.  ( `' X " ( _V  \  {  .0.  } ) ) ,  ( X `  y
) ,  ( X `
 y ) )  =  if ( y  e.  ( `' X " ( _V  \  {  .0.  } ) ) ,  ( X `  y
) ,  .0.  )
)
1611, 15syl5reqr 2482 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( D  \  ( `' X " ( _V 
\  {  .0.  }
) ) ) )  ->  if ( y  e.  ( `' X " ( _V  \  {  .0.  } ) ) ,  ( X `  y
) ,  .0.  )  =  ( X `  y ) )
1710, 16sylan2br 463 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  D  /\  -.  y  e.  ( `' X "
( _V  \  {  .0.  } ) ) ) )  ->  if (
y  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ,  ( X `  y ) ,  .0.  )  =  ( X `  y
) )
1817anassrs 630 . . . . . 6  |-  ( ( ( ph  /\  y  e.  D )  /\  -.  y  e.  ( `' X " ( _V  \  {  .0.  } ) ) )  ->  if (
y  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ,  ( X `  y ) ,  .0.  )  =  ( X `  y
) )
199, 18pm2.61dan 767 . . . . 5  |-  ( (
ph  /\  y  e.  D )  ->  if ( y  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ,  ( X `  y ) ,  .0.  )  =  ( X `  y
) )
2019mpteq2dva 4287 . . . 4  |-  ( ph  ->  ( y  e.  D  |->  if ( y  e.  ( `' X "
( _V  \  {  .0.  } ) ) ,  ( X `  y
) ,  .0.  )
)  =  ( y  e.  D  |->  ( X `
 y ) ) )
217, 20eqtr4d 2470 . . 3  |-  ( ph  ->  X  =  ( y  e.  D  |->  if ( y  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ,  ( X `  y ) ,  .0.  ) ) )
22 cnvimass 5216 . . . . 5  |-  ( `' X " ( _V 
\  {  .0.  }
) )  C_  dom  X
23 fdm 5587 . . . . . 6  |-  ( X : D --> ( Base `  R )  ->  dom  X  =  D )
246, 23syl 16 . . . . 5  |-  ( ph  ->  dom  X  =  D )
2522, 24syl5sseq 3388 . . . 4  |-  ( ph  ->  ( `' X "
( _V  \  {  .0.  } ) )  C_  D )
26 eqid 2435 . . . . . . . 8  |-  ( I mPwSer  R )  =  ( I mPwSer  R )
27 eqid 2435 . . . . . . . 8  |-  ( Base `  ( I mPwSer  R ) )  =  ( Base `  ( I mPwSer  R ) )
28 mplcoe1.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
291, 26, 27, 28, 3mplelbas 16486 . . . . . . 7  |-  ( X  e.  B  <->  ( X  e.  ( Base `  (
I mPwSer  R ) )  /\  ( `' X " ( _V 
\  {  .0.  }
) )  e.  Fin ) )
3029simprbi 451 . . . . . 6  |-  ( X  e.  B  ->  ( `' X " ( _V 
\  {  .0.  }
) )  e.  Fin )
315, 30syl 16 . . . . 5  |-  ( ph  ->  ( `' X "
( _V  \  {  .0.  } ) )  e. 
Fin )
32 sseq1 3361 . . . . . . . 8  |-  ( w  =  (/)  ->  ( w 
C_  D  <->  (/)  C_  D
) )
33 mpteq1 4281 . . . . . . . . . . . 12  |-  ( w  =  (/)  ->  ( k  e.  w  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  ( k  e.  (/)  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )
34 mpt0 5564 . . . . . . . . . . . 12  |-  ( k  e.  (/)  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  (/)
3533, 34syl6eq 2483 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  ( k  e.  w  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  (/) )
3635oveq2d 6089 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( P 
gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( P 
gsumg  (/) ) )
37 eqid 2435 . . . . . . . . . . 11  |-  ( 0g
`  P )  =  ( 0g `  P
)
3837gsum0 14772 . . . . . . . . . 10  |-  ( P 
gsumg  (/) )  =  ( 0g
`  P )
3936, 38syl6eq 2483 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( P 
gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( 0g
`  P ) )
40 noel 3624 . . . . . . . . . . . 12  |-  -.  y  e.  (/)
41 eleq2 2496 . . . . . . . . . . . 12  |-  ( w  =  (/)  ->  ( y  e.  w  <->  y  e.  (/) ) )
4240, 41mtbiri 295 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  -.  y  e.  w )
43 iffalse 3738 . . . . . . . . . . 11  |-  ( -.  y  e.  w  ->  if ( y  e.  w ,  ( X `  y ) ,  .0.  )  =  .0.  )
4442, 43syl 16 . . . . . . . . . 10  |-  ( w  =  (/)  ->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )  =  .0.  )
4544mpteq2dv 4288 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
)  =  ( y  e.  D  |->  .0.  )
)
4639, 45eqeq12d 2449 . . . . . . . 8  |-  ( w  =  (/)  ->  ( ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
)  <->  ( 0g `  P )  =  ( y  e.  D  |->  .0.  ) ) )
4732, 46imbi12d 312 . . . . . . 7  |-  ( w  =  (/)  ->  ( ( w  C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) )  <->  ( (/)  C_  D  ->  ( 0g `  P
)  =  ( y  e.  D  |->  .0.  )
) ) )
4847imbi2d 308 . . . . . 6  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y ) ,  .0.  ) ) ) )  <-> 
( ph  ->  ( (/)  C_  D  ->  ( 0g `  P )  =  ( y  e.  D  |->  .0.  ) ) ) ) )
49 sseq1 3361 . . . . . . . 8  |-  ( w  =  x  ->  (
w  C_  D  <->  x  C_  D
) )
50 mpteq1 4281 . . . . . . . . . 10  |-  ( w  =  x  ->  (
k  e.  w  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) )  =  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )
5150oveq2d 6089 . . . . . . . . 9  |-  ( w  =  x  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( P 
gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
52 eleq2 2496 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
y  e.  w  <->  y  e.  x ) )
5352ifbid 3749 . . . . . . . . . 10  |-  ( w  =  x  ->  if ( y  e.  w ,  ( X `  y ) ,  .0.  )  =  if (
y  e.  x ,  ( X `  y
) ,  .0.  )
)
5453mpteq2dv 4288 . . . . . . . . 9  |-  ( w  =  x  ->  (
y  e.  D  |->  if ( y  e.  w ,  ( X `  y ) ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) )
5551, 54eqeq12d 2449 . . . . . . . 8  |-  ( w  =  x  ->  (
( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
)  <->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) ) )
5649, 55imbi12d 312 . . . . . . 7  |-  ( w  =  x  ->  (
( w  C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) )  <->  ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) ) ) )
5756imbi2d 308 . . . . . 6  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) ) )  <->  ( ph  ->  ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) ) ) ) )
58 sseq1 3361 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ z } )  ->  ( w  C_  D 
<->  ( x  u.  {
z } )  C_  D ) )
59 mpteq1 4281 . . . . . . . . . 10  |-  ( w  =  ( x  u. 
{ z } )  ->  ( k  e.  w  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  ( k  e.  ( x  u.  {
z } )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )
6059oveq2d 6089 . . . . . . . . 9  |-  ( w  =  ( x  u. 
{ z } )  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
61 eleq2 2496 . . . . . . . . . . 11  |-  ( w  =  ( x  u. 
{ z } )  ->  ( y  e.  w  <->  y  e.  ( x  u.  { z } ) ) )
6261ifbid 3749 . . . . . . . . . 10  |-  ( w  =  ( x  u. 
{ z } )  ->  if ( y  e.  w ,  ( X `  y ) ,  .0.  )  =  if ( y  e.  ( x  u.  {
z } ) ,  ( X `  y
) ,  .0.  )
)
6362mpteq2dv 4288 . . . . . . . . 9  |-  ( w  =  ( x  u. 
{ z } )  ->  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y ) ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u. 
{ z } ) ,  ( X `  y ) ,  .0.  ) ) )
6460, 63eqeq12d 2449 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ z } )  ->  ( ( P 
gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
)  <->  ( P  gsumg  ( k  e.  ( x  u. 
{ z } ) 
|->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `
 y ) ,  .0.  ) ) ) )
6558, 64imbi12d 312 . . . . . . 7  |-  ( w  =  ( x  u. 
{ z } )  ->  ( ( w 
C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) )  <->  ( (
x  u.  { z } )  C_  D  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  ) ) ) ) )
6665imbi2d 308 . . . . . 6  |-  ( w  =  ( x  u. 
{ z } )  ->  ( ( ph  ->  ( w  C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) ) )  <->  ( ph  ->  ( ( x  u. 
{ z } ) 
C_  D  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  ) ) ) ) ) )
67 sseq1 3361 . . . . . . . 8  |-  ( w  =  ( `' X " ( _V  \  {  .0.  } ) )  -> 
( w  C_  D  <->  ( `' X " ( _V 
\  {  .0.  }
) )  C_  D
) )
68 mpteq1 4281 . . . . . . . . . 10  |-  ( w  =  ( `' X " ( _V  \  {  .0.  } ) )  -> 
( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  ( k  e.  ( `' X "
( _V  \  {  .0.  } ) )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )
6968oveq2d 6089 . . . . . . . . 9  |-  ( w  =  ( `' X " ( _V  \  {  .0.  } ) )  -> 
( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( P 
gsumg  ( k  e.  ( `' X " ( _V 
\  {  .0.  }
) )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
70 eleq2 2496 . . . . . . . . . . 11  |-  ( w  =  ( `' X " ( _V  \  {  .0.  } ) )  -> 
( y  e.  w  <->  y  e.  ( `' X " ( _V  \  {  .0.  } ) ) ) )
7170ifbid 3749 . . . . . . . . . 10  |-  ( w  =  ( `' X " ( _V  \  {  .0.  } ) )  ->  if ( y  e.  w ,  ( X `  y ) ,  .0.  )  =  if (
y  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ,  ( X `  y ) ,  .0.  ) )
7271mpteq2dv 4288 . . . . . . . . 9  |-  ( w  =  ( `' X " ( _V  \  {  .0.  } ) )  -> 
( y  e.  D  |->  if ( y  e.  w ,  ( X `
 y ) ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  e.  ( `' X "
( _V  \  {  .0.  } ) ) ,  ( X `  y
) ,  .0.  )
) )
7369, 72eqeq12d 2449 . . . . . . . 8  |-  ( w  =  ( `' X " ( _V  \  {  .0.  } ) )  -> 
( ( P  gsumg  ( k  e.  w  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y ) ,  .0.  ) )  <->  ( P  gsumg  ( k  e.  ( `' X " ( _V 
\  {  .0.  }
) )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ,  ( X `  y ) ,  .0.  ) ) ) )
7467, 73imbi12d 312 . . . . . . 7  |-  ( w  =  ( `' X " ( _V  \  {  .0.  } ) )  -> 
( ( w  C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y ) ,  .0.  ) ) )  <->  ( ( `' X " ( _V 
\  {  .0.  }
) )  C_  D  ->  ( P  gsumg  ( k  e.  ( `' X " ( _V 
\  {  .0.  }
) )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ,  ( X `  y ) ,  .0.  ) ) ) ) )
7574imbi2d 308 . . . . . 6  |-  ( w  =  ( `' X " ( _V  \  {  .0.  } ) )  -> 
( ( ph  ->  ( w  C_  D  ->  ( P  gsumg  ( k  e.  w  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  w ,  ( X `  y
) ,  .0.  )
) ) )  <->  ( ph  ->  ( ( `' X " ( _V  \  {  .0.  } ) )  C_  D  ->  ( P  gsumg  ( k  e.  ( `' X " ( _V  \  {  .0.  } ) )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( `' X " ( _V  \  {  .0.  } ) ) ,  ( X `  y
) ,  .0.  )
) ) ) ) )
76 mplcoe1.i . . . . . . . . 9  |-  ( ph  ->  I  e.  W )
77 mplcoe1.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
78 rnggrp 15661 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  R  e. 
Grp )
7977, 78syl 16 . . . . . . . . 9  |-  ( ph  ->  R  e.  Grp )
801, 4, 28, 37, 76, 79mpl0 16496 . . . . . . . 8  |-  ( ph  ->  ( 0g `  P
)  =  ( D  X.  {  .0.  }
) )
81 fconstmpt 4913 . . . . . . . 8  |-  ( D  X.  {  .0.  }
)  =  ( y  e.  D  |->  .0.  )
8280, 81syl6eq 2483 . . . . . . 7  |-  ( ph  ->  ( 0g `  P
)  =  ( y  e.  D  |->  .0.  )
)
8382a1d 23 . . . . . 6  |-  ( ph  ->  ( (/)  C_  D  -> 
( 0g `  P
)  =  ( y  e.  D  |->  .0.  )
) )
84 ssun1 3502 . . . . . . . . . . 11  |-  x  C_  ( x  u.  { z } )
85 sstr2 3347 . . . . . . . . . . 11  |-  ( x 
C_  ( x  u. 
{ z } )  ->  ( ( x  u.  { z } )  C_  D  ->  x 
C_  D ) )
8684, 85ax-mp 8 . . . . . . . . . 10  |-  ( ( x  u.  { z } )  C_  D  ->  x  C_  D )
8786imim1i 56 . . . . . . . . 9  |-  ( ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) )  ->  (
( x  u.  {
z } )  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) ) )
88 oveq1 6080 . . . . . . . . . . . 12  |-  ( ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  ->  ( ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) ( +g  `  P
) ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) )  =  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) ( +g  `  P
) ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) )
89 eqid 2435 . . . . . . . . . . . . . 14  |-  ( +g  `  P )  =  ( +g  `  P )
901mplrng 16507 . . . . . . . . . . . . . . . . 17  |-  ( ( I  e.  W  /\  R  e.  Ring )  ->  P  e.  Ring )
9176, 77, 90syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  Ring )
92 rngcmn 15686 . . . . . . . . . . . . . . . 16  |-  ( P  e.  Ring  ->  P  e. CMnd
)
9391, 92syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e. CMnd )
9493adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  P  e. CMnd )
95 simprll 739 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  x  e.  Fin )
96 simprr 734 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( x  u. 
{ z } ) 
C_  D )
9796unssad 3516 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  x  C_  D
)
9897sselda 3340 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  k  e.  x
)  ->  k  e.  D )
9976adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  I  e.  W )
10077adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  R  e.  Ring )
1011mpllmod 16506 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  W  /\  R  e.  Ring )  ->  P  e.  LMod )
10299, 100, 101syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  D )  ->  P  e.  LMod )
1036ffvelrnda 5862 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  ( X `  k )  e.  ( Base `  R
) )
1041, 76, 77mplsca 16500 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  R  =  (Scalar `  P ) )
105104adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  D )  ->  R  =  (Scalar `  P )
)
106105fveq2d 5724 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  ( Base `  R )  =  ( Base `  (Scalar `  P ) ) )
107103, 106eleqtrd 2511 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  D )  ->  ( X `  k )  e.  ( Base `  (Scalar `  P ) ) )
108 mplcoe1.o . . . . . . . . . . . . . . . . . 18  |-  .1.  =  ( 1r `  R )
109 simpr 448 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  k  e.  D )
1101, 3, 28, 108, 4, 99, 100, 109mplmon 16518 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  D )  ->  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) )  e.  B
)
111 eqid 2435 . . . . . . . . . . . . . . . . . 18  |-  (Scalar `  P )  =  (Scalar `  P )
112 mplcoe1.n . . . . . . . . . . . . . . . . . 18  |-  .x.  =  ( .s `  P )
113 eqid 2435 . . . . . . . . . . . . . . . . . 18  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
1143, 111, 112, 113lmodvscl 15959 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  LMod  /\  ( X `  k )  e.  ( Base `  (Scalar `  P ) )  /\  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) )  e.  B
)  ->  ( ( X `  k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  e.  B )
115102, 107, 110, 114syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  D )  ->  (
( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) )  e.  B
)
116115adantlr 696 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  k  e.  D
)  ->  ( ( X `  k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  e.  B )
11798, 116syldan 457 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  k  e.  x
)  ->  ( ( X `  k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  e.  B )
118 vex 2951 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
119118a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  z  e.  _V )
120 simprlr 740 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  -.  z  e.  x )
12176, 77, 101syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  LMod )
122121adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  P  e.  LMod )
1236adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  X : D --> ( Base `  R )
)
12496unssbd 3517 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  { z } 
C_  D )
125118snss 3918 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  D  <->  { z }  C_  D )
126124, 125sylibr 204 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  z  e.  D
)
127123, 126ffvelrnd 5863 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( X `  z )  e.  (
Base `  R )
)
128104adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  R  =  (Scalar `  P ) )
129128fveq2d 5724 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( Base `  R
)  =  ( Base `  (Scalar `  P )
) )
130127, 129eleqtrd 2511 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( X `  z )  e.  (
Base `  (Scalar `  P
) ) )
13176adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  I  e.  W
)
13277adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  R  e.  Ring )
1331, 3, 28, 108, 4, 131, 132, 126mplmon 16518 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) )  e.  B )
1343, 111, 112, 113lmodvscl 15959 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  LMod  /\  ( X `  z )  e.  ( Base `  (Scalar `  P ) )  /\  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) )  e.  B
)  ->  ( ( X `  z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )  e.  B )
135122, 130, 133, 134syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )  e.  B )
136 fveq2 5720 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  ( X `  k )  =  ( X `  z ) )
137 equequ2 1698 . . . . . . . . . . . . . . . . 17  |-  ( k  =  z  ->  (
y  =  k  <->  y  =  z ) )
138137ifbid 3749 . . . . . . . . . . . . . . . 16  |-  ( k  =  z  ->  if ( y  =  k ,  .1.  ,  .0.  )  =  if (
y  =  z ,  .1.  ,  .0.  )
)
139138mpteq2dv 4288 . . . . . . . . . . . . . . 15  |-  ( k  =  z  ->  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )
140136, 139oveq12d 6091 . . . . . . . . . . . . . 14  |-  ( k  =  z  ->  (
( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) )  =  ( ( X `  z
)  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  )
) ) )
1413, 89, 94, 95, 117, 119, 120, 135, 140gsumunsn 15536 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( P  gsumg  ( k  e.  ( x  u. 
{ z } ) 
|->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) ( +g  `  P
) ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) )
142 eqid 2435 . . . . . . . . . . . . . . 15  |-  ( +g  `  R )  =  ( +g  `  R )
143123ffvelrnda 5862 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  ( X `  y )  e.  (
Base `  R )
)
1442, 28rng0cl 15677 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  Ring  ->  .0.  e.  ( Base `  R )
)
14577, 144syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  .0.  e.  ( Base `  R ) )
146145ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  .0.  e.  ( Base `  R )
)
147 ifcl 3767 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( X `  y
)  e.  ( Base `  R )  /\  .0.  e.  ( Base `  R
) )  ->  if ( y  e.  x ,  ( X `  y ) ,  .0.  )  e.  ( Base `  R ) )
148143, 146, 147syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  if (
y  e.  x ,  ( X `  y
) ,  .0.  )  e.  ( Base `  R
) )
149 eqid 2435 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)
150148, 149fmptd 5885 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) : D --> ( Base `  R ) )
151 fvex 5734 . . . . . . . . . . . . . . . . . . 19  |-  ( Base `  R )  e.  _V
152 ovex 6098 . . . . . . . . . . . . . . . . . . . . 21  |-  ( NN0 
^m  I )  e. 
_V
153152rabex 4346 . . . . . . . . . . . . . . . . . . . 20  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V
1544, 153eqeltri 2505 . . . . . . . . . . . . . . . . . . 19  |-  D  e. 
_V
155151, 154elmap 7034 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  ( ( Base `  R
)  ^m  D )  <->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) : D --> ( Base `  R )
)
156150, 155sylibr 204 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  ( ( Base `  R )  ^m  D
) )
15726, 2, 4, 27, 131psrbas 16435 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( Base `  (
I mPwSer  R ) )  =  ( ( Base `  R
)  ^m  D )
)
158156, 157eleqtrrd 2512 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  ( Base `  (
I mPwSer  R ) ) )
159 eldifn 3462 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( D  \  x )  ->  -.  y  e.  x )
160159adantl 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  ( D  \  x ) )  ->  -.  y  e.  x )
161 iffalse 3738 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  y  e.  x  ->  if ( y  e.  x ,  ( X `  y ) ,  .0.  )  =  .0.  )
162160, 161syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  ( D  \  x ) )  ->  if (
y  e.  x ,  ( X `  y
) ,  .0.  )  =  .0.  )
163162suppss2 6292 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( `' ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) " ( _V  \  {  .0.  }
) )  C_  x
)
164 ssfi 7321 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  Fin  /\  ( `' ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )
" ( _V  \  {  .0.  } ) ) 
C_  x )  -> 
( `' ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) " ( _V 
\  {  .0.  }
) )  e.  Fin )
16595, 163, 164syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( `' ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) " ( _V  \  {  .0.  }
) )  e.  Fin )
1661, 26, 27, 28, 3mplelbas 16486 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  B  <->  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) )  e.  ( Base `  (
I mPwSer  R ) )  /\  ( `' ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )
" ( _V  \  {  .0.  } ) )  e.  Fin ) )
167158, 165, 166sylanbrc 646 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  e.  B )
1681, 3, 142, 89, 167, 135mpladd 16497 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) ( +g  `  P
) ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) )  =  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  o F ( +g  `  R ) ( ( X `  z )  .x.  (
y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) )
169154a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  D  e.  _V )
170 ovex 6098 . . . . . . . . . . . . . . . 16  |-  ( ( X `  z ) ( .r `  R
) if ( y  =  z ,  .1.  ,  .0.  ) )  e. 
_V
171170a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  ( ( X `  z )
( .r `  R
) if ( y  =  z ,  .1.  ,  .0.  ) )  e. 
_V )
172 eqidd 2436 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) )
173 eqid 2435 . . . . . . . . . . . . . . . . 17  |-  ( .r
`  R )  =  ( .r `  R
)
1741, 112, 2, 3, 173, 4, 127, 133mplvsca 16502 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  ( ( D  X.  { ( X `  z ) } )  o F ( .r
`  R ) ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) )
175127adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  ( X `  z )  e.  (
Base `  R )
)
1762, 108rngidcl 15676 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
177 ifcl 3767 . . . . . . . . . . . . . . . . . . . 20  |-  ( (  .1.  e.  ( Base `  R )  /\  .0.  e.  ( Base `  R
) )  ->  if ( y  =  z ,  .1.  ,  .0.  )  e.  ( Base `  R ) )
178176, 144, 177syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e.  Ring  ->  if ( y  =  z ,  .1.  ,  .0.  )  e.  ( Base `  R
) )
17977, 178syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  if ( y  =  z ,  .1.  ,  .0.  )  e.  ( Base `  R ) )
180179ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  if (
y  =  z ,  .1.  ,  .0.  )  e.  ( Base `  R
) )
181 fconstmpt 4913 . . . . . . . . . . . . . . . . . 18  |-  ( D  X.  { ( X `
 z ) } )  =  ( y  e.  D  |->  ( X `
 z ) )
182181a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( D  X.  { ( X `  z ) } )  =  ( y  e.  D  |->  ( X `  z ) ) )
183 eqidd 2436 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )
184169, 175, 180, 182, 183offval2 6314 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( D  X.  { ( X `
 z ) } )  o F ( .r `  R ) ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) ) )
185174, 184eqtrd 2467 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( X `
 z )  .x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) ) )
186169, 148, 171, 172, 185offval2 6314 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  o F ( +g  `  R ) ( ( X `  z )  .x.  (
y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) )  =  ( y  e.  D  |->  ( if ( y  e.  x ,  ( X `  y
) ,  .0.  )
( +g  `  R ) ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) )
187132, 78syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  R  e.  Grp )
1882, 142, 28grplid 14827 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Grp  /\  ( X `  z )  e.  ( Base `  R
) )  ->  (  .0.  ( +g  `  R
) ( X `  z ) )  =  ( X `  z
) )
189187, 127, 188syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  (  .0.  ( +g  `  R ) ( X `  z ) )  =  ( X `
 z ) )
190189ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  (  .0.  ( +g  `  R ) ( X `  z ) )  =  ( X `
 z ) )
191 simpr 448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  y  e.  {
z } )
192 elsn 3821 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  { z }  <-> 
y  =  z )
193191, 192sylib 189 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  y  =  z )
194193fveq2d 5724 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( X `  y )  =  ( X `  z ) )
195190, 194eqtr4d 2470 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  (  .0.  ( +g  `  R ) ( X `  z ) )  =  ( X `
 y ) )
196120ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  -.  z  e.  x )
197193, 196eqneltrd 2528 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  -.  y  e.  x )
198197, 161syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  if ( y  e.  x ,  ( X `  y ) ,  .0.  )  =  .0.  )
199 iftrue 3737 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  z  ->  if ( y  =  z ,  .1.  ,  .0.  )  =  .1.  )
200193, 199syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  if ( y  =  z ,  .1.  ,  .0.  )  =  .1.  )
201200oveq2d 6089 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( ( X `
 z ) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  ) )  =  ( ( X `  z
) ( .r `  R )  .1.  )
)
2022, 173, 108rngridm 15680 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  Ring  /\  ( X `  z )  e.  ( Base `  R
) )  ->  (
( X `  z
) ( .r `  R )  .1.  )  =  ( X `  z ) )
203132, 127, 202syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( X `
 z ) ( .r `  R )  .1.  )  =  ( X `  z ) )
204203ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( ( X `
 z ) ( .r `  R )  .1.  )  =  ( X `  z ) )
205201, 204eqtrd 2467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( ( X `
 z ) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  ) )  =  ( X `  z ) )
206198, 205oveq12d 6091 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( if ( y  e.  x ,  ( X `  y
) ,  .0.  )
( +g  `  R ) ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  (  .0.  ( +g  `  R ) ( X `
 z ) ) )
207 elun2 3507 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  { z }  ->  y  e.  ( x  u.  { z } ) )
208207adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  y  e.  ( x  u.  { z } ) )
209 iftrue 3737 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( x  u. 
{ z } )  ->  if ( y  e.  ( x  u. 
{ z } ) ,  ( X `  y ) ,  .0.  )  =  ( X `  y ) )
210208, 209syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  if ( y  e.  ( x  u. 
{ z } ) ,  ( X `  y ) ,  .0.  )  =  ( X `  y ) )
211195, 206, 2103eqtr4d 2477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  y  e.  { z } )  ->  ( if ( y  e.  x ,  ( X `  y
) ,  .0.  )
( +g  `  R ) ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  if ( y  e.  ( x  u.  {
z } ) ,  ( X `  y
) ,  .0.  )
)
21279ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  R  e.  Grp )
2132, 142, 28grprid 14828 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  Grp  /\  if ( y  e.  x ,  ( X `  y ) ,  .0.  )  e.  ( Base `  R ) )  -> 
( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R )  .0.  )  =  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) )
214212, 148, 213syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R
)  .0.  )  =  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) )
215214adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R
)  .0.  )  =  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) )
216 simpr 448 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  -.  y  e.  { z } )
217216, 192sylnib 296 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  -.  y  =  z )
218 iffalse 3738 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  y  =  z  ->  if ( y  =  z ,  .1.  ,  .0.  )  =  .0.  )
219217, 218syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  if ( y  =  z ,  .1.  ,  .0.  )  =  .0.  )
220219oveq2d 6089 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  (
( X `  z
) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  )
)  =  ( ( X `  z ) ( .r `  R
)  .0.  ) )
2212, 173, 28rngrz 15693 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  Ring  /\  ( X `  z )  e.  ( Base `  R
) )  ->  (
( X `  z
) ( .r `  R )  .0.  )  =  .0.  )
222132, 127, 221syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( X `
 z ) ( .r `  R )  .0.  )  =  .0.  )
223222ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  (
( X `  z
) ( .r `  R )  .0.  )  =  .0.  )
224220, 223eqtrd 2467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  (
( X `  z
) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  )
)  =  .0.  )
225224oveq2d 6089 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R
) ( ( X `
 z ) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R )  .0.  ) )
226 biorf 395 . . . . . . . . . . . . . . . . . . . 20  |-  ( -.  y  e.  { z }  ->  ( y  e.  x  <->  ( y  e. 
{ z }  \/  y  e.  x )
) )
227 elun 3480 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( x  u. 
{ z } )  <-> 
( y  e.  x  \/  y  e.  { z } ) )
228 orcom 377 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  x  \/  y  e.  { z } )  <->  ( y  e.  { z }  \/  y  e.  x )
)
229227, 228bitri 241 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( x  u. 
{ z } )  <-> 
( y  e.  {
z }  \/  y  e.  x ) )
230226, 229syl6rbbr 256 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  y  e.  { z }  ->  ( y  e.  ( x  u.  {
z } )  <->  y  e.  x ) )
231230adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  (
y  e.  ( x  u.  { z } )  <->  y  e.  x
) )
232231ifbid 3749 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  )  =  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) )
233215, 225, 2323eqtr4d 2477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( x  e. 
Fin  /\  -.  z  e.  x )  /\  (
x  u.  { z } )  C_  D
) )  /\  y  e.  D )  /\  -.  y  e.  { z } )  ->  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R
) ( ( X `
 z ) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  if ( y  e.  ( x  u.  {
z } ) ,  ( X `  y
) ,  .0.  )
)
234211, 233pm2.61dan 767 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( x  e.  Fin  /\ 
-.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  /\  y  e.  D
)  ->  ( if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ( +g  `  R
) ( ( X `
 z ) ( .r `  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) )  =  if ( y  e.  ( x  u.  {
z } ) ,  ( X `  y
) ,  .0.  )
)
235234mpteq2dva 4287 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  ( if ( y  e.  x ,  ( X `  y
) ,  .0.  )
( +g  `  R ) ( ( X `  z ) ( .r
`  R ) if ( y  =  z ,  .1.  ,  .0.  ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u. 
{ z } ) ,  ( X `  y ) ,  .0.  ) ) )
236168, 186, 2353eqtrrd 2472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( y  e.  D  |->  if ( y  e.  ( x  u. 
{ z } ) ,  ( X `  y ) ,  .0.  ) )  =  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `
 y ) ,  .0.  ) ) ( +g  `  P ) ( ( X `  z )  .x.  (
y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) )
237141, 236eqeq12d 2449 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( P 
gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  ) )  <-> 
( ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) ( +g  `  P ) ( ( X `  z ) 
.x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) )  =  ( ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) ( +g  `  P ) ( ( X `  z ) 
.x.  ( y  e.  D  |->  if ( y  =  z ,  .1.  ,  .0.  ) ) ) ) ) )
23888, 237syl5ibr 213 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
x  e.  Fin  /\  -.  z  e.  x
)  /\  ( x  u.  { z } ) 
C_  D ) )  ->  ( ( P 
gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `
 y ) ,  .0.  ) ) ) )
239238expr 599 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  z  e.  x ) )  -> 
( ( x  u. 
{ z } ) 
C_  D  ->  (
( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
)  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `
 y ) ,  .0.  ) ) ) ) )
240239a2d 24 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  z  e.  x ) )  -> 
( ( ( x  u.  { z } )  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y
) ,  .0.  )
) )  ->  (
( x  u.  {
z } )  C_  D  ->  ( P  gsumg  ( k  e.  ( x  u. 
{ z } ) 
|->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `
 y ) ,  .0.  ) ) ) ) )
24187, 240syl5 30 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Fin  /\  -.  z  e.  x ) )  -> 
( ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) )  -> 
( ( x  u. 
{ z } ) 
C_  D  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  ) ) ) ) )
242241expcom 425 . . . . . . 7  |-  ( ( x  e.  Fin  /\  -.  z  e.  x
)  ->  ( ph  ->  ( ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) )  -> 
( ( x  u. 
{ z } ) 
C_  D  ->  ( P  gsumg  ( k  e.  ( x  u.  { z } )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `  y ) ,  .0.  ) ) ) ) ) )
243242a2d 24 . . . . . 6  |-  ( ( x  e.  Fin  /\  -.  z  e.  x
)  ->  ( ( ph  ->  ( x  C_  D  ->  ( P  gsumg  ( k  e.  x  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  x ,  ( X `  y ) ,  .0.  ) ) ) )  ->  ( ph  ->  ( ( x  u.  {
z } )  C_  D  ->  ( P  gsumg  ( k  e.  ( x  u. 
{ z } ) 
|->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( x  u.  { z } ) ,  ( X `
 y ) ,  .0.  ) ) ) ) ) )
24448, 57, 66, 75, 83, 243findcard2s 7341 . . . . 5  |-  ( ( `' X " ( _V 
\  {  .0.  }
) )  e.  Fin  ->  ( ph  ->  (
( `' X "
( _V  \  {  .0.  } ) )  C_  D  ->  ( P  gsumg  ( k  e.  ( `' X " ( _V  \  {  .0.  } ) )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( `' X " ( _V  \  {  .0.  } ) ) ,  ( X `  y
) ,  .0.  )
) ) ) )
24531, 244mpcom 34 . . . 4  |-  ( ph  ->  ( ( `' X " ( _V  \  {  .0.  } ) )  C_  D  ->  ( P  gsumg  ( k  e.  ( `' X " ( _V  \  {  .0.  } ) )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( `' X " ( _V  \  {  .0.  } ) ) ,  ( X `  y
) ,  .0.  )
) ) )
24625, 245mpd 15 . . 3  |-  ( ph  ->  ( P  gsumg  ( k  e.  ( `' X " ( _V 
\  {  .0.  }
) )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( y  e.  D  |->  if ( y  e.  ( `' X " ( _V 
\  {  .0.  }
) ) ,  ( X `  y ) ,  .0.  ) ) )
24721, 246eqtr4d 2470 . 2  |-  ( ph  ->  X  =  ( P 
gsumg  ( k  e.  ( `' X " ( _V 
\  {  .0.  }
) )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
248 resmpt 5183 . . . . 5  |-  ( ( `' X " ( _V 
\  {  .0.  }
) )  C_  D  ->  ( ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  |`  ( `' X "
( _V  \  {  .0.  } ) ) )  =  ( k  e.  ( `' X "
( _V  \  {  .0.  } ) )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )
24925, 248syl 16 . . . 4  |-  ( ph  ->  ( ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  |`  ( `' X "
( _V  \  {  .0.  } ) ) )  =  ( k  e.  ( `' X "
( _V  \  {  .0.  } ) )  |->  ( ( X `  k
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) ) )
250249oveq2d 6089 . . 3  |-  ( ph  ->  ( P  gsumg  ( ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  |`  ( `' X "
( _V  \  {  .0.  } ) ) ) )  =  ( P 
gsumg  ( k  e.  ( `' X " ( _V 
\  {  .0.  }
) )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
251154a1i 11 . . . 4  |-  ( ph  ->  D  e.  _V )
252 eqid 2435 . . . . 5  |-  ( k  e.  D  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  =  ( k  e.  D  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )
253115, 252fmptd 5885 . . . 4  |-  ( ph  ->  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) : D --> B )
2546, 13suppssr 5856 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( D  \  ( `' X " ( _V 
\  {  .0.  }
) ) ) )  ->  ( X `  k )  =  .0.  )
255254oveq1d 6088 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  ( `' X " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  (  .0.  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )
256 eldifi 3461 . . . . . . 7  |-  ( k  e.  ( D  \ 
( `' X "
( _V  \  {  .0.  } ) ) )  ->  k  e.  D
)
257105fveq2d 5724 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  D )  ->  ( 0g `  R )  =  ( 0g `  (Scalar `  P ) ) )
25828, 257syl5eq 2479 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  D )  ->  .0.  =  ( 0g `  (Scalar `  P ) ) )
259258oveq1d 6088 . . . . . . . 8  |-  ( (
ph  /\  k  e.  D )  ->  (  .0.  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( ( 0g
`  (Scalar `  P )
)  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  )
) ) )
260 eqid 2435 . . . . . . . . . 10  |-  ( 0g
`  (Scalar `  P )
)  =  ( 0g
`  (Scalar `  P )
)
2613, 111, 112, 260, 37lmod0vs 15975 . . . . . . . . 9  |-  ( ( P  e.  LMod  /\  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) )  e.  B
)  ->  ( ( 0g `  (Scalar `  P
) )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( 0g `  P
) )
262102, 110, 261syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  k  e.  D )  ->  (
( 0g `  (Scalar `  P ) )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( 0g `  P
) )
263259, 262eqtrd 2467 . . . . . . 7  |-  ( (
ph  /\  k  e.  D )  ->  (  .0.  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( 0g `  P ) )
264256, 263sylan2 461 . . . . . 6  |-  ( (
ph  /\  k  e.  ( D  \  ( `' X " ( _V 
\  {  .0.  }
) ) ) )  ->  (  .0.  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( 0g `  P
) )
265255, 264eqtrd 2467 . . . . 5  |-  ( (
ph  /\  k  e.  ( D  \  ( `' X " ( _V 
\  {  .0.  }
) ) ) )  ->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) )  =  ( 0g `  P
) )
266265suppss2 6292 . . . 4  |-  ( ph  ->  ( `' ( k  e.  D  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) " ( _V 
\  { ( 0g
`  P ) } ) )  C_  ( `' X " ( _V 
\  {  .0.  }
) ) )
267 ssfi 7321 . . . . 5  |-  ( ( ( `' X "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  ( `' ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )
" ( _V  \  { ( 0g `  P ) } ) )  C_  ( `' X " ( _V  \  {  .0.  } ) ) )  ->  ( `' ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )
" ( _V  \  { ( 0g `  P ) } ) )  e.  Fin )
26831, 266, 267syl2anc 643 . . . 4  |-  ( ph  ->  ( `' ( k  e.  D  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) " ( _V 
\  { ( 0g
`  P ) } ) )  e.  Fin )
2693, 37, 93, 251, 253, 266, 268gsumres 15512 . . 3  |-  ( ph  ->  ( P  gsumg  ( ( k  e.  D  |->  ( ( X `
 k )  .x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) )  |`  ( `' X "
( _V  \  {  .0.  } ) ) ) )  =  ( P 
gsumg  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
270250, 269eqtr3d 2469 . 2  |-  ( ph  ->  ( P  gsumg  ( k  e.  ( `' X " ( _V 
\  {  .0.  }
) )  |->  ( ( X `  k ) 
.x.  ( y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) )  =  ( P  gsumg  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
271247, 270eqtrd 2467 1  |-  ( ph  ->  X  =  ( P 
gsumg  ( k  e.  D  |->  ( ( X `  k )  .x.  (
y  e.  D  |->  if ( y  =  k ,  .1.  ,  .0.  ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2701   _Vcvv 2948    \ cdif 3309    u. cun 3310    C_ wss 3312   (/)c0 3620   ifcif 3731   {csn 3806    e. cmpt 4258    X. cxp 4868   `'ccnv 4869   dom cdm 4870    |` cres 4872   "cima 4873   -->wf 5442   ` cfv 5446  (class class class)co 6073    o Fcof 6295    ^m cmap 7010   Fincfn 7101   NNcn 9992   NN0cn0 10213   Basecbs 13461   +g cplusg 13521   .rcmulr 13522  Scalarcsca 13524   .scvsca 13525   0gc0g 13715    gsumg cgsu 13716   Grpcgrp 14677  CMndccmn 15404   Ringcrg 15652   1rcur 15654   LModclmod 15942   mPwSer cmps 16398   mPoly cmpl 16400
This theorem is referenced by:  mplbas2  16523  mplcoe4  16555  ply1coe  16676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-fzo 11128  df-seq 11316  df-hash 11611  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-sca 13537  df-vsca 13538  df-tset 13540  df-0g 13719  df-gsum 13720  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-mhm 14730  df-submnd 14731  df-grp 14804  df-minusg 14805  df-sbg 14806  df-mulg 14807  df-subg 14933  df-ghm 14996  df-cntz 15108  df-cmn 15406  df-abl 15407  df-mgp 15641  df-rng 15655  df-ur 15657  df-subrg 15858  df-lmod 15944  df-lss 16001  df-psr 16409  df-mpl 16411
  Copyright terms: Public domain W3C validator