MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmonmul Unicode version

Theorem mplmonmul 16454
Description: The product of two monomials adds the exponent vectors together. For example, the product of  ( x ^ 2 ) ( y ^
2 ) with  ( y ^ 1 ) ( z ^ 3 ) is  ( x ^ 2 ) ( y ^
3 ) ( z ^ 3 ), where the exponent vectors  <. 2 ,  2 ,  0 >. and  <. 0 ,  1 ,  3
>. are added to give  <. 2 ,  3 ,  3 >.. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplmon.s  |-  P  =  ( I mPoly  R )
mplmon.b  |-  B  =  ( Base `  P
)
mplmon.z  |-  .0.  =  ( 0g `  R )
mplmon.o  |-  .1.  =  ( 1r `  R )
mplmon.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
mplmon.i  |-  ( ph  ->  I  e.  W )
mplmon.r  |-  ( ph  ->  R  e.  Ring )
mplmon.x  |-  ( ph  ->  X  e.  D )
mplmonmul.t  |-  .x.  =  ( .r `  P )
mplmonmul.x  |-  ( ph  ->  Y  e.  D )
Assertion
Ref Expression
mplmonmul  |-  ( ph  ->  ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) )  .x.  ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  )
) )
Distinct variable groups:    y, D    f, I    ph, y    y, f, X    y,  .0.    y,  .1.    y, R    f, Y, y
Allowed substitution hints:    ph( f)    B( y, f)    D( f)    P( y, f)    R( f)    .x. ( y,
f)    .1. ( f)    I( y)    W( y, f)    .0. ( f)

Proof of Theorem mplmonmul
Dummy variables  j 
k  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplmon.s . . 3  |-  P  =  ( I mPoly  R )
2 mplmon.b . . 3  |-  B  =  ( Base `  P
)
3 eqid 2387 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
4 mplmonmul.t . . 3  |-  .x.  =  ( .r `  P )
5 mplmon.d . . 3  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
6 mplmon.z . . . 4  |-  .0.  =  ( 0g `  R )
7 mplmon.o . . . 4  |-  .1.  =  ( 1r `  R )
8 mplmon.i . . . 4  |-  ( ph  ->  I  e.  W )
9 mplmon.r . . . 4  |-  ( ph  ->  R  e.  Ring )
10 mplmon.x . . . 4  |-  ( ph  ->  X  e.  D )
111, 2, 6, 7, 5, 8, 9, 10mplmon 16453 . . 3  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) )  e.  B
)
12 mplmonmul.x . . . 4  |-  ( ph  ->  Y  e.  D )
131, 2, 6, 7, 5, 8, 9, 12mplmon 16453 . . 3  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) )  e.  B
)
141, 2, 3, 4, 5, 11, 13mplmul 16433 . 2  |-  ( ph  ->  ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) )  .x.  ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) )  =  ( k  e.  D  |->  ( R  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) ) ) )
15 eqeq1 2393 . . . . 5  |-  ( y  =  k  ->  (
y  =  ( X  o F  +  Y
)  <->  k  =  ( X  o F  +  Y ) ) )
1615ifbid 3700 . . . 4  |-  ( y  =  k  ->  if ( y  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  )  =  if ( k  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  ) )
1716cbvmptv 4241 . . 3  |-  ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y
) ,  .1.  ,  .0.  ) )  =  ( k  e.  D  |->  if ( k  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  ) )
18 simpr 448 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  X  e.  { x  e.  D  |  x  o R  <_  k } )
1918snssd 3886 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  { X }  C_  { x  e.  D  |  x  o R  <_  k } )
20 resmpt 5131 . . . . . . . . 9  |-  ( { X }  C_  { x  e.  D  |  x  o R  <_  k }  ->  ( ( j  e.  { x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) ) )  |`  { X } )  =  ( j  e.  { X }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) )
2119, 20syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( j  e. 
{ x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) )  |`  { X } )  =  ( j  e.  { X }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) )
2221oveq2d 6036 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( R  gsumg  ( ( j  e. 
{ x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) )  |`  { X } ) )  =  ( R  gsumg  ( j  e.  { X }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) ) )
239ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  R  e.  Ring )
24 rngmnd 15600 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
2523, 24syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  R  e.  Mnd )
2610ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  X  e.  D )
27 iftrue 3688 . . . . . . . . . . . . 13  |-  ( y  =  X  ->  if ( y  =  X ,  .1.  ,  .0.  )  =  .1.  )
28 eqid 2387 . . . . . . . . . . . . 13  |-  ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) )
29 fvex 5682 . . . . . . . . . . . . . 14  |-  ( 1r
`  R )  e. 
_V
307, 29eqeltri 2457 . . . . . . . . . . . . 13  |-  .1.  e.  _V
3127, 28, 30fvmpt 5745 . . . . . . . . . . . 12  |-  ( X  e.  D  ->  (
( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  X
)  =  .1.  )
3226, 31syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  X )  =  .1.  )
33 ssrab2 3371 . . . . . . . . . . . . 13  |-  { x  e.  D  |  x  o R  <_  k } 
C_  D
348ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  I  e.  W )
35 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
k  e.  D )
36 eqid 2387 . . . . . . . . . . . . . . 15  |-  { x  e.  D  |  x  o R  <_  k }  =  { x  e.  D  |  x  o R  <_  k }
375, 36psrbagconcl 16365 . . . . . . . . . . . . . 14  |-  ( ( I  e.  W  /\  k  e.  D  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  ( k  o F  -  X
)  e.  { x  e.  D  |  x  o R  <_  k } )
3834, 35, 18, 37syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( k  o F  -  X )  e. 
{ x  e.  D  |  x  o R  <_  k } )
3933, 38sseldi 3289 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( k  o F  -  X )  e.  D )
40 eqeq1 2393 . . . . . . . . . . . . . 14  |-  ( y  =  ( k  o F  -  X )  ->  ( y  =  Y  <->  ( k  o F  -  X )  =  Y ) )
4140ifbid 3700 . . . . . . . . . . . . 13  |-  ( y  =  ( k  o F  -  X )  ->  if ( y  =  Y ,  .1.  ,  .0.  )  =  if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  ) )
42 eqid 2387 . . . . . . . . . . . . 13  |-  ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) )  =  ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) )
43 fvex 5682 . . . . . . . . . . . . . . 15  |-  ( 0g
`  R )  e. 
_V
446, 43eqeltri 2457 . . . . . . . . . . . . . 14  |-  .0.  e.  _V
4530, 44ifex 3740 . . . . . . . . . . . . 13  |-  if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  )  e.  _V
4641, 42, 45fvmpt 5745 . . . . . . . . . . . 12  |-  ( ( k  o F  -  X )  e.  D  ->  ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  X ) )  =  if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  ) )
4739, 46syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  X ) )  =  if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  ) )
4832, 47oveq12d 6038 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 X ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  X ) ) )  =  (  .1.  ( .r `  R
) if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  ) ) )
49 eqid 2387 . . . . . . . . . . . . . 14  |-  ( Base `  R )  =  (
Base `  R )
5049, 7rngidcl 15611 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
5149, 6rng0cl 15612 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  .0.  e.  ( Base `  R )
)
52 ifcl 3718 . . . . . . . . . . . . 13  |-  ( (  .1.  e.  ( Base `  R )  /\  .0.  e.  ( Base `  R
) )  ->  if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  )  e.  (
Base `  R )
)
5350, 51, 52syl2anc 643 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  )  e.  ( Base `  R ) )
5423, 53syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  )  e.  (
Base `  R )
)
5549, 3, 7rnglidm 15614 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  )  e.  (
Base `  R )
)  ->  (  .1.  ( .r `  R ) if ( ( k  o F  -  X
)  =  Y ,  .1.  ,  .0.  ) )  =  if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  ) )
5623, 54, 55syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
(  .1.  ( .r
`  R ) if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  ) )  =  if ( ( k  o F  -  X
)  =  Y ,  .1.  ,  .0.  ) )
575psrbagf 16359 . . . . . . . . . . . . . . . . . 18  |-  ( ( I  e.  W  /\  k  e.  D )  ->  k : I --> NN0 )
5834, 35, 57syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
k : I --> NN0 )
5958ffvelrnda 5809 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  /\  z  e.  I )  ->  (
k `  z )  e.  NN0 )
608adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  D )  ->  I  e.  W )
6110adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  D )  ->  X  e.  D )
625psrbagf 16359 . . . . . . . . . . . . . . . . . . 19  |-  ( ( I  e.  W  /\  X  e.  D )  ->  X : I --> NN0 )
6360, 61, 62syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  X : I --> NN0 )
6463ffvelrnda 5809 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  D )  /\  z  e.  I )  ->  ( X `  z )  e.  NN0 )
6564adantlr 696 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  /\  z  e.  I )  ->  ( X `  z )  e.  NN0 )
665psrbagf 16359 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  e.  W  /\  Y  e.  D )  ->  Y : I --> NN0 )
678, 12, 66syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  Y : I --> NN0 )
6867adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  D )  ->  Y : I --> NN0 )
6968ffvelrnda 5809 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  D )  /\  z  e.  I )  ->  ( Y `  z )  e.  NN0 )
7069adantlr 696 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  /\  z  e.  I )  ->  ( Y `  z )  e.  NN0 )
71 nn0cn 10163 . . . . . . . . . . . . . . . . 17  |-  ( ( k `  z )  e.  NN0  ->  ( k `
 z )  e.  CC )
72 nn0cn 10163 . . . . . . . . . . . . . . . . 17  |-  ( ( X `  z )  e.  NN0  ->  ( X `
 z )  e.  CC )
73 nn0cn 10163 . . . . . . . . . . . . . . . . 17  |-  ( ( Y `  z )  e.  NN0  ->  ( Y `
 z )  e.  CC )
74 subadd 9240 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k `  z
)  e.  CC  /\  ( X `  z )  e.  CC  /\  ( Y `  z )  e.  CC )  ->  (
( ( k `  z )  -  ( X `  z )
)  =  ( Y `
 z )  <->  ( ( X `  z )  +  ( Y `  z ) )  =  ( k `  z
) ) )
7571, 72, 73, 74syl3an 1226 . . . . . . . . . . . . . . . 16  |-  ( ( ( k `  z
)  e.  NN0  /\  ( X `  z )  e.  NN0  /\  ( Y `  z )  e.  NN0 )  ->  (
( ( k `  z )  -  ( X `  z )
)  =  ( Y `
 z )  <->  ( ( X `  z )  +  ( Y `  z ) )  =  ( k `  z
) ) )
7659, 65, 70, 75syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  /\  z  e.  I )  ->  (
( ( k `  z )  -  ( X `  z )
)  =  ( Y `
 z )  <->  ( ( X `  z )  +  ( Y `  z ) )  =  ( k `  z
) ) )
77 eqcom 2389 . . . . . . . . . . . . . . 15  |-  ( ( ( X `  z
)  +  ( Y `
 z ) )  =  ( k `  z )  <->  ( k `  z )  =  ( ( X `  z
)  +  ( Y `
 z ) ) )
7876, 77syl6bb 253 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  /\  z  e.  I )  ->  (
( ( k `  z )  -  ( X `  z )
)  =  ( Y `
 z )  <->  ( k `  z )  =  ( ( X `  z
)  +  ( Y `
 z ) ) ) )
7978ralbidva 2665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( A. z  e.  I  ( ( k `
 z )  -  ( X `  z ) )  =  ( Y `
 z )  <->  A. z  e.  I  ( k `  z )  =  ( ( X `  z
)  +  ( Y `
 z ) ) ) )
80 mpteqb 5758 . . . . . . . . . . . . . 14  |-  ( A. z  e.  I  (
( k `  z
)  -  ( X `
 z ) )  e.  _V  ->  (
( z  e.  I  |->  ( ( k `  z )  -  ( X `  z )
) )  =  ( z  e.  I  |->  ( Y `  z ) )  <->  A. z  e.  I 
( ( k `  z )  -  ( X `  z )
)  =  ( Y `
 z ) ) )
81 ovex 6045 . . . . . . . . . . . . . . 15  |-  ( ( k `  z )  -  ( X `  z ) )  e. 
_V
8281a1i 11 . . . . . . . . . . . . . 14  |-  ( z  e.  I  ->  (
( k `  z
)  -  ( X `
 z ) )  e.  _V )
8380, 82mprg 2718 . . . . . . . . . . . . 13  |-  ( ( z  e.  I  |->  ( ( k `  z
)  -  ( X `
 z ) ) )  =  ( z  e.  I  |->  ( Y `
 z ) )  <->  A. z  e.  I 
( ( k `  z )  -  ( X `  z )
)  =  ( Y `
 z ) )
84 mpteqb 5758 . . . . . . . . . . . . . 14  |-  ( A. z  e.  I  (
k `  z )  e.  _V  ->  ( (
z  e.  I  |->  ( k `  z ) )  =  ( z  e.  I  |->  ( ( X `  z )  +  ( Y `  z ) ) )  <->  A. z  e.  I 
( k `  z
)  =  ( ( X `  z )  +  ( Y `  z ) ) ) )
85 fvex 5682 . . . . . . . . . . . . . . 15  |-  ( k `
 z )  e. 
_V
8685a1i 11 . . . . . . . . . . . . . 14  |-  ( z  e.  I  ->  (
k `  z )  e.  _V )
8784, 86mprg 2718 . . . . . . . . . . . . 13  |-  ( ( z  e.  I  |->  ( k `  z ) )  =  ( z  e.  I  |->  ( ( X `  z )  +  ( Y `  z ) ) )  <->  A. z  e.  I 
( k `  z
)  =  ( ( X `  z )  +  ( Y `  z ) ) )
8879, 83, 873bitr4g 280 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( z  e.  I  |->  ( ( k `
 z )  -  ( X `  z ) ) )  =  ( z  e.  I  |->  ( Y `  z ) )  <->  ( z  e.  I  |->  ( k `  z ) )  =  ( z  e.  I  |->  ( ( X `  z )  +  ( Y `  z ) ) ) ) )
8958feqmptd 5718 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
k  =  ( z  e.  I  |->  ( k `
 z ) ) )
9063feqmptd 5718 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  D )  ->  X  =  ( z  e.  I  |->  ( X `  z ) ) )
9190adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  X  =  ( z  e.  I  |->  ( X `
 z ) ) )
9234, 59, 65, 89, 91offval2 6261 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( k  o F  -  X )  =  ( z  e.  I  |->  ( ( k `  z )  -  ( X `  z )
) ) )
9368feqmptd 5718 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  D )  ->  Y  =  ( z  e.  I  |->  ( Y `  z ) ) )
9493adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  Y  =  ( z  e.  I  |->  ( Y `
 z ) ) )
9592, 94eqeq12d 2401 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( k  o F  -  X )  =  Y  <->  ( z  e.  I  |->  ( ( k `  z )  -  ( X `  z ) ) )  =  ( z  e.  I  |->  ( Y `  z ) ) ) )
9660, 64, 69, 90, 93offval2 6261 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  D )  ->  ( X  o F  +  Y
)  =  ( z  e.  I  |->  ( ( X `  z )  +  ( Y `  z ) ) ) )
9796adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( X  o F  +  Y )  =  ( z  e.  I  |->  ( ( X `  z )  +  ( Y `  z ) ) ) )
9889, 97eqeq12d 2401 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( k  =  ( X  o F  +  Y )  <->  ( z  e.  I  |->  ( k `
 z ) )  =  ( z  e.  I  |->  ( ( X `
 z )  +  ( Y `  z
) ) ) ) )
9988, 95, 983bitr4d 277 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( k  o F  -  X )  =  Y  <->  k  =  ( X  o F  +  Y ) ) )
10099ifbid 3700 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  if ( ( k  o F  -  X )  =  Y ,  .1.  ,  .0.  )  =  if ( k  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  ) )
10148, 56, 1003eqtrd 2423 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 X ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  X ) ) )  =  if ( k  =  ( X  o F  +  Y
) ,  .1.  ,  .0.  ) )
102100, 54eqeltrrd 2462 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  if ( k  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  )  e.  (
Base `  R )
)
103101, 102eqeltrd 2461 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 X ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  X ) ) )  e.  ( Base `  R ) )
104 fveq2 5668 . . . . . . . . . 10  |-  ( j  =  X  ->  (
( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
)  =  ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  X
) )
105 oveq2 6028 . . . . . . . . . . 11  |-  ( j  =  X  ->  (
k  o F  -  j )  =  ( k  o F  -  X ) )
106105fveq2d 5672 . . . . . . . . . 10  |-  ( j  =  X  ->  (
( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) )  =  ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  X ) ) )
107104, 106oveq12d 6038 . . . . . . . . 9  |-  ( j  =  X  ->  (
( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j ) ( .r
`  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) )  =  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  X
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  X ) ) ) )
10849, 107gsumsn 15470 . . . . . . . 8  |-  ( ( R  e.  Mnd  /\  X  e.  D  /\  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 X ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  X ) ) )  e.  ( Base `  R ) )  -> 
( R  gsumg  ( j  e.  { X }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) )  =  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  X ) ( .r
`  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  X ) ) ) )
10925, 26, 103, 108syl3anc 1184 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( R  gsumg  ( j  e.  { X }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) )  =  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  X ) ( .r
`  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  X ) ) ) )
11022, 109, 1013eqtrd 2423 . . . . . 6  |-  ( ( ( ph  /\  k  e.  D )  /\  X  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( R  gsumg  ( ( j  e. 
{ x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) )  |`  { X } ) )  =  if ( k  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  )
)
1116gsum0 14707 . . . . . . 7  |-  ( R 
gsumg  (/) )  =  .0.
112 disjsn 3811 . . . . . . . . 9  |-  ( ( { x  e.  D  |  x  o R  <_  k }  i^i  { X } )  =  (/)  <->  -.  X  e.  { x  e.  D  |  x  o R  <_  k } )
1139ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  ->  R  e.  Ring )
1141, 49, 2, 5, 11mplelf 16424 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) : D --> ( Base `  R )
)
115114ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) : D --> ( Base `  R )
)
116 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
j  e.  { x  e.  D  |  x  o R  <_  k } )
11733, 116sseldi 3289 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
j  e.  D )
118115, 117ffvelrnd 5810 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j )  e.  (
Base `  R )
)
1191, 49, 2, 5, 13mplelf 16424 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) : D --> ( Base `  R )
)
120119ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) : D --> ( Base `  R )
)
1218ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  ->  I  e.  W )
122 simplr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
k  e.  D )
1235, 36psrbagconcl 16365 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  W  /\  k  e.  D  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  ->  ( k  o F  -  j
)  e.  { x  e.  D  |  x  o R  <_  k } )
124121, 122, 116, 123syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( k  o F  -  j )  e. 
{ x  e.  D  |  x  o R  <_  k } )
12533, 124sseldi 3289 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( k  o F  -  j )  e.  D )
126120, 125ffvelrnd 5810 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) )  e.  ( Base `  R
) )
12749, 3rngcl 15604 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  (
( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
)  e.  ( Base `  R )  /\  (
( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) )  e.  ( Base `  R
) )  ->  (
( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j ) ( .r
`  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) )  e.  ( Base `  R
) )
128113, 118, 126, 127syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) )  e.  ( Base `  R ) )
129 eqid 2387 . . . . . . . . . . . 12  |-  ( j  e.  { x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) ) )  =  ( j  e.  { x  e.  D  |  x  o R  <_  k } 
|->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) ) )
130128, 129fmptd 5832 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  D )  ->  (
j  e.  { x  e.  D  |  x  o R  <_  k } 
|->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) ) ) : {
x  e.  D  |  x  o R  <_  k }
--> ( Base `  R
) )
131 ffn 5531 . . . . . . . . . . 11  |-  ( ( j  e.  { x  e.  D  |  x  o R  <_  k } 
|->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) ) ) : {
x  e.  D  |  x  o R  <_  k }
--> ( Base `  R
)  ->  ( j  e.  { x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) )  Fn  { x  e.  D  |  x  o R  <_  k } )
132 fnresdisj 5495 . . . . . . . . . . 11  |-  ( ( j  e.  { x  e.  D  |  x  o R  <_  k } 
|->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) ) )  Fn  {
x  e.  D  |  x  o R  <_  k }  ->  ( ( { x  e.  D  |  x  o R  <_  k }  i^i  { X }
)  =  (/)  <->  ( (
j  e.  { x  e.  D  |  x  o R  <_  k } 
|->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) ) )  |`  { X } )  =  (/) ) )
133130, 131, 1323syl 19 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  D )  ->  (
( { x  e.  D  |  x  o R  <_  k }  i^i  { X } )  =  (/)  <->  ( ( j  e.  { x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) ) )  |`  { X } )  =  (/) ) )
134133biimpa 471 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  ( { x  e.  D  |  x  o R  <_  k }  i^i  { X } )  =  (/) )  ->  ( ( j  e.  { x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) ) )  |`  { X } )  =  (/) )
135112, 134sylan2br 463 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  -.  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  ( (
j  e.  { x  e.  D  |  x  o R  <_  k } 
|->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) ) )  |`  { X } )  =  (/) )
136135oveq2d 6036 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  D )  /\  -.  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  ( R  gsumg  ( ( j  e.  {
x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) )  |`  { X } ) )  =  ( R  gsumg  (/) ) )
13764nn0red 10207 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  D )  /\  z  e.  I )  ->  ( X `  z )  e.  RR )
138 nn0addge1 10198 . . . . . . . . . . . . . 14  |-  ( ( ( X `  z
)  e.  RR  /\  ( Y `  z )  e.  NN0 )  -> 
( X `  z
)  <_  ( ( X `  z )  +  ( Y `  z ) ) )
139137, 69, 138syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  D )  /\  z  e.  I )  ->  ( X `  z )  <_  ( ( X `  z )  +  ( Y `  z ) ) )
140139ralrimiva 2732 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  D )  ->  A. z  e.  I  ( X `  z )  <_  (
( X `  z
)  +  ( Y `
 z ) ) )
141 ovex 6045 . . . . . . . . . . . . . 14  |-  ( ( X `  z )  +  ( Y `  z ) )  e. 
_V
142141a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  D )  /\  z  e.  I )  ->  (
( X `  z
)  +  ( Y `
 z ) )  e.  _V )
14360, 64, 142, 90, 96ofrfval2 6262 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  D )  ->  ( X  o R  <_  ( X  o F  +  Y
)  <->  A. z  e.  I 
( X `  z
)  <_  ( ( X `  z )  +  ( Y `  z ) ) ) )
144140, 143mpbird 224 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  D )  ->  X  o R  <_  ( X  o F  +  Y
) )
145 breq1 4156 . . . . . . . . . . . 12  |-  ( x  =  X  ->  (
x  o R  <_ 
( X  o F  +  Y )  <->  X  o R  <_  ( X  o F  +  Y )
) )
146145elrab 3035 . . . . . . . . . . 11  |-  ( X  e.  { x  e.  D  |  x  o R  <_  ( X  o F  +  Y
) }  <->  ( X  e.  D  /\  X  o R  <_  ( X  o F  +  Y )
) )
14761, 144, 146sylanbrc 646 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  D )  ->  X  e.  { x  e.  D  |  x  o R  <_  ( X  o F  +  Y ) } )
148 breq2 4157 . . . . . . . . . . . 12  |-  ( k  =  ( X  o F  +  Y )  ->  ( x  o R  <_  k  <->  x  o R  <_  ( X  o F  +  Y )
) )
149148rabbidv 2891 . . . . . . . . . . 11  |-  ( k  =  ( X  o F  +  Y )  ->  { x  e.  D  |  x  o R  <_  k }  =  {
x  e.  D  |  x  o R  <_  ( X  o F  +  Y
) } )
150149eleq2d 2454 . . . . . . . . . 10  |-  ( k  =  ( X  o F  +  Y )  ->  ( X  e.  {
x  e.  D  |  x  o R  <_  k } 
<->  X  e.  { x  e.  D  |  x  o R  <_  ( X  o F  +  Y
) } ) )
151147, 150syl5ibrcom 214 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  D )  ->  (
k  =  ( X  o F  +  Y
)  ->  X  e.  { x  e.  D  |  x  o R  <_  k } ) )
152151con3and 429 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  -.  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  -.  k  =  ( X  o F  +  Y )
)
153 iffalse 3689 . . . . . . . 8  |-  ( -.  k  =  ( X  o F  +  Y
)  ->  if (
k  =  ( X  o F  +  Y
) ,  .1.  ,  .0.  )  =  .0.  )
154152, 153syl 16 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  D )  /\  -.  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  if (
k  =  ( X  o F  +  Y
) ,  .1.  ,  .0.  )  =  .0.  )
155111, 136, 1543eqtr4a 2445 . . . . . 6  |-  ( ( ( ph  /\  k  e.  D )  /\  -.  X  e.  { x  e.  D  |  x  o R  <_  k } )  ->  ( R  gsumg  ( ( j  e.  {
x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) )  |`  { X } ) )  =  if ( k  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  )
)
156110, 155pm2.61dan 767 . . . . 5  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( ( j  e. 
{ x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) )  |`  { X } ) )  =  if ( k  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  )
)
1579adantr 452 . . . . . . 7  |-  ( (
ph  /\  k  e.  D )  ->  R  e.  Ring )
158 rngcmn 15621 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. CMnd
)
159157, 158syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  R  e. CMnd )
1605psrbaglefi 16364 . . . . . . 7  |-  ( ( I  e.  W  /\  k  e.  D )  ->  { x  e.  D  |  x  o R  <_  k }  e.  Fin )
1618, 160sylan 458 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  { x  e.  D  |  x  o R  <_  k }  e.  Fin )
162 ssdif 3425 . . . . . . . . . . . 12  |-  ( { x  e.  D  |  x  o R  <_  k }  C_  D  ->  ( { x  e.  D  |  x  o R  <_  k }  \  { X } )  C_  ( D  \  { X }
) )
16333, 162ax-mp 8 . . . . . . . . . . 11  |-  ( { x  e.  D  |  x  o R  <_  k }  \  { X }
)  C_  ( D  \  { X } )
164163sseli 3287 . . . . . . . . . 10  |-  ( j  e.  ( { x  e.  D  |  x  o R  <_  k } 
\  { X }
)  ->  j  e.  ( D  \  { X } ) )
165114adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  D )  ->  (
y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) : D --> ( Base `  R )
)
166 eldifsni 3871 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( D  \  { X } )  -> 
y  =/=  X )
167166adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  D )  /\  y  e.  ( D  \  { X } ) )  -> 
y  =/=  X )
168167neneqd 2566 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  D )  /\  y  e.  ( D  \  { X } ) )  ->  -.  y  =  X
)
169 iffalse 3689 . . . . . . . . . . . . 13  |-  ( -.  y  =  X  ->  if ( y  =  X ,  .1.  ,  .0.  )  =  .0.  )
170168, 169syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  D )  /\  y  e.  ( D  \  { X } ) )  ->  if ( y  =  X ,  .1.  ,  .0.  )  =  .0.  )
171170suppss2 6239 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  D )  ->  ( `' ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) "
( _V  \  {  .0.  } ) )  C_  { X } )
172165, 171suppssr 5803 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  ( D  \  { X } ) )  -> 
( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j )  =  .0.  )
173164, 172sylan2 461 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  ( { x  e.  D  |  x  o R  <_  k }  \  { X } ) )  ->  ( (
y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
)  =  .0.  )
174173oveq1d 6035 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  ( { x  e.  D  |  x  o R  <_  k }  \  { X } ) )  ->  ( (
( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) )  =  (  .0.  ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) )
175 eldifi 3412 . . . . . . . . 9  |-  ( j  e.  ( { x  e.  D  |  x  o R  <_  k } 
\  { X }
)  ->  j  e.  { x  e.  D  |  x  o R  <_  k } )
17649, 3, 6rnglz 15627 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) )  e.  ( Base `  R
) )  ->  (  .0.  ( .r `  R
) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `
 ( k  o F  -  j ) ) )  =  .0.  )
177113, 126, 176syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  { x  e.  D  |  x  o R  <_  k } )  -> 
(  .0.  ( .r
`  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) )  =  .0.  )
178175, 177sylan2 461 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  ( { x  e.  D  |  x  o R  <_  k }  \  { X } ) )  ->  (  .0.  ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) )  =  .0.  )
179174, 178eqtrd 2419 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  D )  /\  j  e.  ( { x  e.  D  |  x  o R  <_  k }  \  { X } ) )  ->  ( (
( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) )  =  .0.  )
180179suppss2 6239 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  ( `' ( j  e. 
{ x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) " ( _V 
\  {  .0.  }
) )  C_  { X } )
181 snfi 7123 . . . . . . 7  |-  { X }  e.  Fin
182 ssfi 7265 . . . . . . 7  |-  ( ( { X }  e.  Fin  /\  ( `' ( j  e.  { x  e.  D  |  x  o R  <_  k } 
|->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `
 j ) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  ( k  o F  -  j ) ) ) ) " ( _V  \  {  .0.  }
) )  C_  { X } )  ->  ( `' ( j  e. 
{ x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) " ( _V 
\  {  .0.  }
) )  e.  Fin )
183181, 180, 182sylancr 645 . . . . . 6  |-  ( (
ph  /\  k  e.  D )  ->  ( `' ( j  e. 
{ x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) " ( _V 
\  {  .0.  }
) )  e.  Fin )
18449, 6, 159, 161, 130, 180, 183gsumres 15447 . . . . 5  |-  ( (
ph  /\  k  e.  D )  ->  ( R  gsumg  ( ( j  e. 
{ x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) )  |`  { X } ) )  =  ( R  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) ) )
185156, 184eqtr3d 2421 . . . 4  |-  ( (
ph  /\  k  e.  D )  ->  if ( k  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  )  =  ( R  gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) ) )
186185mpteq2dva 4236 . . 3  |-  ( ph  ->  ( k  e.  D  |->  if ( k  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  )
)  =  ( k  e.  D  |->  ( R 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) ) ) )
18717, 186syl5eq 2431 . 2  |-  ( ph  ->  ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  )
)  =  ( k  e.  D  |->  ( R 
gsumg  ( j  e.  {
x  e.  D  |  x  o R  <_  k }  |->  ( ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) ) `  j
) ( .r `  R ) ( ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) `  (
k  o F  -  j ) ) ) ) ) ) )
18814, 187eqtr4d 2422 1  |-  ( ph  ->  ( ( y  e.  D  |->  if ( y  =  X ,  .1.  ,  .0.  ) )  .x.  ( y  e.  D  |->  if ( y  =  Y ,  .1.  ,  .0.  ) ) )  =  ( y  e.  D  |->  if ( y  =  ( X  o F  +  Y ) ,  .1.  ,  .0.  )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   {crab 2653   _Vcvv 2899    \ cdif 3260    i^i cin 3262    C_ wss 3263   (/)c0 3571   ifcif 3682   {csn 3757   class class class wbr 4153    e. cmpt 4207   `'ccnv 4817    |` cres 4820   "cima 4821    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020    o Fcof 6242    o Rcofr 6243    ^m cmap 6954   Fincfn 7045   CCcc 8921   RRcr 8922    + caddc 8926    <_ cle 9054    - cmin 9223   NNcn 9932   NN0cn0 10153   Basecbs 13396   .rcmulr 13457   0gc0g 13650    gsumg cgsu 13651   Mndcmnd 14611  CMndccmn 15339   Ringcrg 15587   1rcur 15589   mPoly cmpl 16335
This theorem is referenced by:  mplcoe3  16456  mplcoe2  16457  mplmon2mul  16488
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-ofr 6245  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-fzo 11066  df-seq 11251  df-hash 11546  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-sca 13472  df-vsca 13473  df-tset 13475  df-0g 13654  df-gsum 13655  df-mnd 14617  df-grp 14739  df-minusg 14740  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-ur 15592  df-psr 16344  df-mpl 16346
  Copyright terms: Public domain W3C validator