MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteqb Unicode version

Theorem mpteqb 5759
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5767. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
mpteqb  |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem mpteqb
StepHypRef Expression
1 elex 2908 . . 3  |-  ( B  e.  V  ->  B  e.  _V )
21ralimi 2725 . 2  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  _V )
3 fneq1 5475 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( ( x  e.  A  |->  B )  Fn  A  <->  ( x  e.  A  |->  C )  Fn  A ) )
4 eqid 2388 . . . . . . . 8  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
54mptfng 5511 . . . . . . 7  |-  ( A. x  e.  A  B  e.  _V  <->  ( x  e.  A  |->  B )  Fn  A )
6 eqid 2388 . . . . . . . 8  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
76mptfng 5511 . . . . . . 7  |-  ( A. x  e.  A  C  e.  _V  <->  ( x  e.  A  |->  C )  Fn  A )
83, 5, 73bitr4g 280 . . . . . 6  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V 
<-> 
A. x  e.  A  C  e.  _V )
)
98biimpd 199 . . . . 5  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  A. x  e.  A  C  e.  _V )
)
10 r19.26 2782 . . . . . . 7  |-  ( A. x  e.  A  ( B  e.  _V  /\  C  e.  _V )  <->  ( A. x  e.  A  B  e.  _V  /\  A. x  e.  A  C  e.  _V ) )
11 nfmpt1 4240 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  B )
12 nfmpt1 4240 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  C )
1311, 12nfeq 2531 . . . . . . . . 9  |-  F/ x
( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
14 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
1514fveq1d 5671 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  ( ( x  e.  A  |->  C ) `  x
) )
164fvmpt2 5752 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
1716ad2ant2lr 729 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  B )
186fvmpt2 5752 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  C  e.  _V )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
1918ad2ant2l 727 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  C ) `  x )  =  C )
2015, 17, 193eqtr3d 2428 . . . . . . . . . 10  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  ->  B  =  C )
2120exp31 588 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( x  e.  A  ->  ( ( B  e.  _V  /\  C  e.  _V )  ->  B  =  C ) ) )
2213, 21ralrimi 2731 . . . . . . . 8  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  A. x  e.  A  ( ( B  e. 
_V  /\  C  e.  _V )  ->  B  =  C ) )
23 ralim 2721 . . . . . . . 8  |-  ( A. x  e.  A  (
( B  e.  _V  /\  C  e.  _V )  ->  B  =  C )  ->  ( A. x  e.  A  ( B  e.  _V  /\  C  e. 
_V )  ->  A. x  e.  A  B  =  C ) )
2422, 23syl 16 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  ( B  e.  _V  /\  C  e. 
_V )  ->  A. x  e.  A  B  =  C ) )
2510, 24syl5bir 210 . . . . . 6  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( ( A. x  e.  A  B  e.  _V  /\  A. x  e.  A  C  e.  _V )  ->  A. x  e.  A  B  =  C ) )
2625exp3a 426 . . . . 5  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  ( A. x  e.  A  C  e.  _V  ->  A. x  e.  A  B  =  C )
) )
279, 26mpdd 38 . . . 4  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  A. x  e.  A  B  =  C )
)
2827com12 29 . . 3  |-  ( A. x  e.  A  B  e.  _V  ->  ( (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  A. x  e.  A  B  =  C )
)
29 eqid 2388 . . . 4  |-  A  =  A
30 mpteq12 4230 . . . 4  |-  ( ( A  =  A  /\  A. x  e.  A  B  =  C )  ->  (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
3129, 30mpan 652 . . 3  |-  ( A. x  e.  A  B  =  C  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
3228, 31impbid1 195 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  ( (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
332, 32syl 16 1  |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   _Vcvv 2900    e. cmpt 4208    Fn wfn 5390   ` cfv 5395
This theorem is referenced by:  eqfnfv  5767  eufnfv  5912  offveqb  6266  ramcl  13325  fucsect  14097  setcepi  14171  0frgp  15339  dprdf11  15509  dpjeq  15545  mvrf1  16417  mplmonmul  16455  frgpcyg  16778  ustuqtop  18198  mdegle0  19868  ply1nzb  19913  cvmliftphtlem  24784
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-fv 5403
  Copyright terms: Public domain W3C validator