Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptfnf Structured version   Unicode version

Theorem mptfnf 24073
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypothesis
Ref Expression
mptfnf.0  |-  F/_ x A
Assertion
Ref Expression
mptfnf  |-  ( A. x  e.  A  B  e.  _V  <->  ( x  e.  A  |->  B )  Fn  A )

Proof of Theorem mptfnf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eueq 3106 . . 3  |-  ( B  e.  _V  <->  E! y 
y  =  B )
21ralbii 2729 . 2  |-  ( A. x  e.  A  B  e.  _V  <->  A. x  e.  A  E! y  y  =  B )
3 r19.26 2838 . . 3  |-  ( A. x  e.  A  ( E. y  y  =  B  /\  E* y  y  =  B )  <->  ( A. x  e.  A  E. y  y  =  B  /\  A. x  e.  A  E* y  y  =  B ) )
4 eu5 2319 . . . 4  |-  ( E! y  y  =  B  <-> 
( E. y  y  =  B  /\  E* y  y  =  B
) )
54ralbii 2729 . . 3  |-  ( A. x  e.  A  E! y  y  =  B  <->  A. x  e.  A  ( E. y  y  =  B  /\  E* y 
y  =  B ) )
6 df-mpt 4268 . . . . . 6  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
76fneq1i 5539 . . . . 5  |-  ( ( x  e.  A  |->  B )  Fn  A  <->  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  Fn  A )
8 df-fn 5457 . . . . 5  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  Fn  A 
<->  ( Fun  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  /\  dom  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  =  A )
)
97, 8bitri 241 . . . 4  |-  ( ( x  e.  A  |->  B )  Fn  A  <->  ( Fun  {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  /\  dom  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }  =  A ) )
10 moanimv 2339 . . . . . . 7  |-  ( E* y ( x  e.  A  /\  y  =  B )  <->  ( x  e.  A  ->  E* y 
y  =  B ) )
1110albii 1575 . . . . . 6  |-  ( A. x E* y ( x  e.  A  /\  y  =  B )  <->  A. x
( x  e.  A  ->  E* y  y  =  B ) )
12 funopab 5486 . . . . . 6  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }  <->  A. x E* y ( x  e.  A  /\  y  =  B ) )
13 df-ral 2710 . . . . . 6  |-  ( A. x  e.  A  E* y  y  =  B  <->  A. x ( x  e.  A  ->  E* y 
y  =  B ) )
1411, 12, 133bitr4ri 270 . . . . 5  |-  ( A. x  e.  A  E* y  y  =  B  <->  Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) } )
15 eqcom 2438 . . . . . 6  |-  ( { x  |  ( x  e.  A  /\  E. y  y  =  B
) }  =  A  <-> 
A  =  { x  |  ( x  e.  A  /\  E. y 
y  =  B ) } )
16 dmopab 5080 . . . . . . . 8  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  =  { x  |  E. y ( x  e.  A  /\  y  =  B ) }
17 19.42v 1928 . . . . . . . . 9  |-  ( E. y ( x  e.  A  /\  y  =  B )  <->  ( x  e.  A  /\  E. y 
y  =  B ) )
1817abbii 2548 . . . . . . . 8  |-  { x  |  E. y ( x  e.  A  /\  y  =  B ) }  =  { x  |  (
x  e.  A  /\  E. y  y  =  B ) }
1916, 18eqtri 2456 . . . . . . 7  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  =  { x  |  (
x  e.  A  /\  E. y  y  =  B ) }
2019eqeq1i 2443 . . . . . 6  |-  ( dom 
{ <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }  =  A 
<->  { x  |  ( x  e.  A  /\  E. y  y  =  B ) }  =  A )
21 pm4.71 612 . . . . . . . 8  |-  ( ( x  e.  A  ->  E. y  y  =  B )  <->  ( x  e.  A  <->  ( x  e.  A  /\  E. y 
y  =  B ) ) )
2221albii 1575 . . . . . . 7  |-  ( A. x ( x  e.  A  ->  E. y 
y  =  B )  <->  A. x ( x  e.  A  <->  ( x  e.  A  /\  E. y 
y  =  B ) ) )
23 df-ral 2710 . . . . . . 7  |-  ( A. x  e.  A  E. y  y  =  B  <->  A. x ( x  e.  A  ->  E. y 
y  =  B ) )
24 mptfnf.0 . . . . . . . 8  |-  F/_ x A
2524abeq2f 23960 . . . . . . 7  |-  ( A  =  { x  |  ( x  e.  A  /\  E. y  y  =  B ) }  <->  A. x
( x  e.  A  <->  ( x  e.  A  /\  E. y  y  =  B ) ) )
2622, 23, 253bitr4i 269 . . . . . 6  |-  ( A. x  e.  A  E. y  y  =  B  <->  A  =  { x  |  ( x  e.  A  /\  E. y  y  =  B ) } )
2715, 20, 263bitr4ri 270 . . . . 5  |-  ( A. x  e.  A  E. y  y  =  B  <->  dom 
{ <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }  =  A )
2814, 27anbi12i 679 . . . 4  |-  ( ( A. x  e.  A  E* y  y  =  B  /\  A. x  e.  A  E. y  y  =  B )  <->  ( Fun  {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }  /\  dom  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }  =  A ) )
29 ancom 438 . . . 4  |-  ( ( A. x  e.  A  E* y  y  =  B  /\  A. x  e.  A  E. y  y  =  B )  <->  ( A. x  e.  A  E. y  y  =  B  /\  A. x  e.  A  E* y  y  =  B ) )
309, 28, 293bitr2i 265 . . 3  |-  ( ( x  e.  A  |->  B )  Fn  A  <->  ( A. x  e.  A  E. y  y  =  B  /\  A. x  e.  A  E* y  y  =  B ) )
313, 5, 303bitr4ri 270 . 2  |-  ( ( x  e.  A  |->  B )  Fn  A  <->  A. x  e.  A  E! y 
y  =  B )
322, 31bitr4i 244 1  |-  ( A. x  e.  A  B  e.  _V  <->  ( x  e.  A  |->  B )  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   E!weu 2281   E*wmo 2282   {cab 2422   F/_wnfc 2559   A.wral 2705   _Vcvv 2956   {copab 4265    e. cmpt 4266   dom cdm 4878   Fun wfun 5448    Fn wfn 5449
This theorem is referenced by:  fnmptf  24074
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-fun 5456  df-fn 5457
  Copyright terms: Public domain W3C validator