MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcflem Unicode version

Theorem mrcflem 13557
Description: The domain and range of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
mrcflem  |-  ( C  e.  (Moore `  X
)  ->  ( x  e.  ~P X  |->  |^| { s  e.  C  |  x 
C_  s } ) : ~P X --> C )
Distinct variable groups:    x, s, C    x, X, s

Proof of Theorem mrcflem
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  C  e.  (Moore `  X
) )
2 ssrab2 3292 . . . 4  |-  { s  e.  C  |  x 
C_  s }  C_  C
32a1i 10 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  { s  e.  C  |  x  C_  s } 
C_  C )
4 mre1cl 13545 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
54adantr 451 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  X  e.  C )
6 elpwi 3667 . . . . . 6  |-  ( x  e.  ~P X  ->  x  C_  X )
76adantl 452 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  x  C_  X )
8 sseq2 3234 . . . . . 6  |-  ( s  =  X  ->  (
x  C_  s  <->  x  C_  X
) )
98elrab 2957 . . . . 5  |-  ( X  e.  { s  e.  C  |  x  C_  s }  <->  ( X  e.  C  /\  x  C_  X ) )
105, 7, 9sylanbrc 645 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  X  e.  { s  e.  C  |  x  C_  s } )
11 ne0i 3495 . . . 4  |-  ( X  e.  { s  e.  C  |  x  C_  s }  ->  { s  e.  C  |  x 
C_  s }  =/=  (/) )
1210, 11syl 15 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  { s  e.  C  |  x  C_  s }  =/=  (/) )
13 mreintcl 13546 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  {
s  e.  C  |  x  C_  s }  C_  C  /\  { s  e.  C  |  x  C_  s }  =/=  (/) )  ->  |^| { s  e.  C  |  x  C_  s }  e.  C )
141, 3, 12, 13syl3anc 1182 . 2  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  |^| { s  e.  C  |  x  C_  s }  e.  C )
15 eqid 2316 . 2  |-  ( x  e.  ~P X  |->  |^|
{ s  e.  C  |  x  C_  s } )  =  ( x  e.  ~P X  |->  |^|
{ s  e.  C  |  x  C_  s } )
1614, 15fmptd 5722 1  |-  ( C  e.  (Moore `  X
)  ->  ( x  e.  ~P X  |->  |^| { s  e.  C  |  x 
C_  s } ) : ~P X --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1701    =/= wne 2479   {crab 2581    C_ wss 3186   (/)c0 3489   ~Pcpw 3659   |^|cint 3899    e. cmpt 4114   -->wf 5288   ` cfv 5292  Moorecmre 13533
This theorem is referenced by:  fnmrc  13558  mrcfval  13559  mrcf  13560
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-int 3900  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-fv 5300  df-mre 13537
  Copyright terms: Public domain W3C validator