MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcflem Unicode version

Theorem mrcflem 13508
Description: The domain and range of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
mrcflem  |-  ( C  e.  (Moore `  X
)  ->  ( x  e.  ~P X  |->  |^| { s  e.  C  |  x 
C_  s } ) : ~P X --> C )
Distinct variable groups:    x, s, C    x, X, s

Proof of Theorem mrcflem
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  C  e.  (Moore `  X
) )
2 ssrab2 3258 . . . 4  |-  { s  e.  C  |  x 
C_  s }  C_  C
32a1i 10 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  { s  e.  C  |  x  C_  s } 
C_  C )
4 mre1cl 13496 . . . . . 6  |-  ( C  e.  (Moore `  X
)  ->  X  e.  C )
54adantr 451 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  X  e.  C )
6 elpwi 3633 . . . . . 6  |-  ( x  e.  ~P X  ->  x  C_  X )
76adantl 452 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  x  C_  X )
8 sseq2 3200 . . . . . 6  |-  ( s  =  X  ->  (
x  C_  s  <->  x  C_  X
) )
98elrab 2923 . . . . 5  |-  ( X  e.  { s  e.  C  |  x  C_  s }  <->  ( X  e.  C  /\  x  C_  X ) )
105, 7, 9sylanbrc 645 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  X  e.  { s  e.  C  |  x  C_  s } )
11 ne0i 3461 . . . 4  |-  ( X  e.  { s  e.  C  |  x  C_  s }  ->  { s  e.  C  |  x 
C_  s }  =/=  (/) )
1210, 11syl 15 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  { s  e.  C  |  x  C_  s }  =/=  (/) )
13 mreintcl 13497 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  {
s  e.  C  |  x  C_  s }  C_  C  /\  { s  e.  C  |  x  C_  s }  =/=  (/) )  ->  |^| { s  e.  C  |  x  C_  s }  e.  C )
141, 3, 12, 13syl3anc 1182 . 2  |-  ( ( C  e.  (Moore `  X )  /\  x  e.  ~P X )  ->  |^| { s  e.  C  |  x  C_  s }  e.  C )
15 eqid 2283 . 2  |-  ( x  e.  ~P X  |->  |^|
{ s  e.  C  |  x  C_  s } )  =  ( x  e.  ~P X  |->  |^|
{ s  e.  C  |  x  C_  s } )
1614, 15fmptd 5684 1  |-  ( C  e.  (Moore `  X
)  ->  ( x  e.  ~P X  |->  |^| { s  e.  C  |  x 
C_  s } ) : ~P X --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684    =/= wne 2446   {crab 2547    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   |^|cint 3862    e. cmpt 4077   -->wf 5251   ` cfv 5255  Moorecmre 13484
This theorem is referenced by:  fnmrc  13509  mrcfval  13510  mrcf  13511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-mre 13488
  Copyright terms: Public domain W3C validator