MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mstri Structured version   Unicode version

Theorem mstri 18492
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mscl.x  |-  X  =  ( Base `  M
)
mscl.d  |-  D  =  ( dist `  M
)
Assertion
Ref Expression
mstri  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  <_  (
( A D C )  +  ( C D B ) ) )

Proof of Theorem mstri
StepHypRef Expression
1 mscl.x . . . 4  |-  X  =  ( Base `  M
)
2 mscl.d . . . 4  |-  D  =  ( dist `  M
)
31, 2msmet2 18483 . . 3  |-  ( M  e.  MetSp  ->  ( D  |`  ( X  X.  X
) )  e.  ( Met `  X ) )
4 mettri 18375 . . 3  |-  ( ( ( D  |`  ( X  X.  X ) )  e.  ( Met `  X
)  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A ( D  |`  ( X  X.  X
) ) B )  <_  ( ( A ( D  |`  ( X  X.  X ) ) C )  +  ( C ( D  |`  ( X  X.  X
) ) B ) ) )
53, 4sylan 458 . 2  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A
( D  |`  ( X  X.  X ) ) B )  <_  (
( A ( D  |`  ( X  X.  X
) ) C )  +  ( C ( D  |`  ( X  X.  X ) ) B ) ) )
6 simpr1 963 . . 3  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
7 simpr2 964 . . 3  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
86, 7ovresd 6207 . 2  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A
( D  |`  ( X  X.  X ) ) B )  =  ( A D B ) )
9 simpr3 965 . . . 4  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
106, 9ovresd 6207 . . 3  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A
( D  |`  ( X  X.  X ) ) C )  =  ( A D C ) )
119, 7ovresd 6207 . . 3  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( C
( D  |`  ( X  X.  X ) ) B )  =  ( C D B ) )
1210, 11oveq12d 6092 . 2  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A ( D  |`  ( X  X.  X
) ) C )  +  ( C ( D  |`  ( X  X.  X ) ) B ) )  =  ( ( A D C )  +  ( C D B ) ) )
135, 8, 123brtr3d 4234 1  |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  <_  (
( A D C )  +  ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4205    X. cxp 4869    |` cres 4873   ` cfv 5447  (class class class)co 6074    + caddc 8986    <_ cle 9114   Basecbs 13462   distcds 13531   Metcme 16680   MetSpcmt 18341
This theorem is referenced by:  ngptgp  18670  nlmvscnlem2  18714
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-er 6898  df-map 7013  df-en 7103  df-dom 7104  df-sdom 7105  df-sup 7439  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-n0 10215  df-z 10276  df-uz 10482  df-q 10568  df-rp 10606  df-xneg 10703  df-xadd 10704  df-xmul 10705  df-topgen 13660  df-psmet 16687  df-xmet 16688  df-met 16689  df-bl 16690  df-mopn 16691  df-top 16956  df-bases 16958  df-topon 16959  df-topsp 16960  df-xms 18343  df-ms 18344
  Copyright terms: Public domain W3C validator