MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mth8 Unicode version

Theorem mth8 138
Description: Theorem 8 of [Margaris] p. 60. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
Assertion
Ref Expression
mth8  |-  ( ph  ->  ( -.  ps  ->  -.  ( ph  ->  ps ) ) )

Proof of Theorem mth8
StepHypRef Expression
1 pm2.27 35 . 2  |-  ( ph  ->  ( ( ph  ->  ps )  ->  ps )
)
21con3d 125 1  |-  ( ph  ->  ( -.  ps  ->  -.  ( ph  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem is referenced by:  mont  24850  meran1  24852  onpsstopbas  24871
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
  Copyright terms: Public domain W3C validator