MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muinv Unicode version

Theorem muinv 20395
Description: The Möbius inversion formula. If  G ( n )  =  sum_ k  ||  n F ( k ) for every  n  e.  NN, then  F ( n )  = 
sum_ k  ||  n  mmu ( k ) G ( n  /  k )  = 
sum_ k  ||  n mmu ( n  /  k
) G ( k ), i.e. the Möbius function is the Dirichlet convolution inverse of the constant function  1. (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
muinv.1  |-  ( ph  ->  F : NN --> CC )
muinv.2  |-  ( ph  ->  G  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
) ) )
Assertion
Ref Expression
muinv  |-  ( ph  ->  F  =  ( m  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) ) ) )
Distinct variable groups:    k, m, j, n, F    x, j,
k, m, n    ph, j,
k, m
Allowed substitution hints:    ph( x, n)    F( x)    G( x, j, k, m, n)

Proof of Theorem muinv
StepHypRef Expression
1 muinv.1 . . 3  |-  ( ph  ->  F : NN --> CC )
21feqmptd 5509 . 2  |-  ( ph  ->  F  =  ( m  e.  NN  |->  ( F `
 m ) ) )
3 muinv.2 . . . . . . . . . 10  |-  ( ph  ->  G  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
) ) )
43ad2antrr 709 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  G  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) )
54fveq1d 5460 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( G `  ( m  /  j
) )  =  ( ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) `  ( m  /  j
) ) )
6 breq1 4000 . . . . . . . . . . . . . 14  |-  ( x  =  j  ->  (
x  ||  m  <->  j  ||  m ) )
76elrab 2898 . . . . . . . . . . . . 13  |-  ( j  e.  { x  e.  NN  |  x  ||  m }  <->  ( j  e.  NN  /\  j  ||  m ) )
87simprbi 452 . . . . . . . . . . . 12  |-  ( j  e.  { x  e.  NN  |  x  ||  m }  ->  j  ||  m )
98adantl 454 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  ||  m )
107simplbi 448 . . . . . . . . . . . . . 14  |-  ( j  e.  { x  e.  NN  |  x  ||  m }  ->  j  e.  NN )
1110adantl 454 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  e.  NN )
1211nnzd 10083 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  e.  ZZ )
1311nnne0d 9758 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  j  =/=  0 )
14 nnz 10012 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  ZZ )
1514ad2antlr 710 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  m  e.  ZZ )
16 divides2 12496 . . . . . . . . . . . 12  |-  ( ( j  e.  ZZ  /\  j  =/=  0  /\  m  e.  ZZ )  ->  (
j  ||  m  <->  ( m  /  j )  e.  ZZ ) )
1712, 13, 15, 16syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( j  ||  m  <->  ( m  / 
j )  e.  ZZ ) )
189, 17mpbid 203 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  j )  e.  ZZ )
19 nnre 9721 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  RR )
20 nngt0 9743 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  0  <  m )
2119, 20jca 520 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
m  e.  RR  /\  0  <  m ) )
2221ad2antlr 710 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  e.  RR  /\  0  < 
m ) )
23 nnre 9721 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  j  e.  RR )
24 nngt0 9743 . . . . . . . . . . . . 13  |-  ( j  e.  NN  ->  0  <  j )
2523, 24jca 520 . . . . . . . . . . . 12  |-  ( j  e.  NN  ->  (
j  e.  RR  /\  0  <  j ) )
2611, 25syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( j  e.  RR  /\  0  < 
j ) )
27 divgt0 9592 . . . . . . . . . . 11  |-  ( ( ( m  e.  RR  /\  0  <  m )  /\  ( j  e.  RR  /\  0  < 
j ) )  -> 
0  <  ( m  /  j ) )
2822, 26, 27syl2anc 645 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  0  <  ( m  /  j ) )
29 elnnz 10001 . . . . . . . . . 10  |-  ( ( m  /  j )  e.  NN  <->  ( (
m  /  j )  e.  ZZ  /\  0  <  ( m  /  j
) ) )
3018, 28, 29sylanbrc 648 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  j )  e.  NN )
31 breq2 4001 . . . . . . . . . . . 12  |-  ( n  =  ( m  / 
j )  ->  (
x  ||  n  <->  x  ||  (
m  /  j ) ) )
3231rabbidv 2755 . . . . . . . . . . 11  |-  ( n  =  ( m  / 
j )  ->  { x  e.  NN  |  x  ||  n }  =  {
x  e.  NN  |  x  ||  ( m  / 
j ) } )
3332sumeq1d 12139 . . . . . . . . . 10  |-  ( n  =  ( m  / 
j )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
)  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( F `  k
) )
34 eqid 2258 . . . . . . . . . 10  |-  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n } 
( F `  k
) )  =  ( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) )
35 sumex 12125 . . . . . . . . . 10  |-  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( F `  k
)  e.  _V
3633, 34, 35fvmpt 5536 . . . . . . . . 9  |-  ( ( m  /  j )  e.  NN  ->  (
( n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) `  ( m  /  j
) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( F `
 k ) )
3730, 36syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
n  e.  NN  |->  sum_ k  e.  { x  e.  NN  |  x  ||  n }  ( F `  k ) ) `  ( m  /  j
) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( F `
 k ) )
385, 37eqtrd 2290 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( G `  ( m  /  j
) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( F `
 k ) )
3938oveq2d 5808 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
mmu `  j )  x.  ( G `  (
m  /  j ) ) )  =  ( ( mmu `  j
)  x.  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( F `  k
) ) )
40 fzfid 11001 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 1 ... ( m  / 
j ) )  e. 
Fin )
41 sgmss 20306 . . . . . . . . 9  |-  ( ( m  /  j )  e.  NN  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  C_  (
1 ... ( m  / 
j ) ) )
4230, 41syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  C_  (
1 ... ( m  / 
j ) ) )
43 ssfi 7051 . . . . . . . 8  |-  ( ( ( 1 ... (
m  /  j ) )  e.  Fin  /\  { x  e.  NN  |  x  ||  ( m  / 
j ) }  C_  ( 1 ... (
m  /  j ) ) )  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  e.  Fin )
4440, 42, 43syl2anc 645 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  j
) }  e.  Fin )
45 mucl 20341 . . . . . . . . 9  |-  ( j  e.  NN  ->  (
mmu `  j )  e.  ZZ )
4611, 45syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( mmu `  j )  e.  ZZ )
4746zcnd 10085 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( mmu `  j )  e.  CC )
481ad2antrr 709 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  F : NN
--> CC )
49 ssrab2 3233 . . . . . . . . 9  |-  { x  e.  NN  |  x  ||  ( m  /  j
) }  C_  NN
5049sseli 3151 . . . . . . . 8  |-  ( k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ->  k  e.  NN )
51 ffvelrn 5597 . . . . . . . 8  |-  ( ( F : NN --> CC  /\  k  e.  NN )  ->  ( F `  k
)  e.  CC )
5248, 50, 51syl2an 465 . . . . . . 7  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m } )  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } )  ->  ( F `  k )  e.  CC )
5344, 47, 52fsummulc2 12211 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
mmu `  j )  x.  sum_ k  e.  {
x  e.  NN  |  x  ||  ( m  / 
j ) }  ( F `  k )
)  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) }  ( ( mmu `  j )  x.  ( F `  k )
) )
5439, 53eqtrd 2290 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  j  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
mmu `  j )  x.  ( G `  (
m  /  j ) ) )  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( ( mmu `  j )  x.  ( F `  k ) ) )
5554sumeq2dv 12141 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) )  =  sum_ j  e.  { x  e.  NN  |  x  ||  m } sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( ( mmu `  j )  x.  ( F `  k ) ) )
56 simpr 449 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  NN )
5747adantrr 700 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
j  e.  { x  e.  NN  |  x  ||  m }  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } ) )  ->  (
mmu `  j )  e.  CC )
5852anasss 631 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
j  e.  { x  e.  NN  |  x  ||  m }  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } ) )  ->  ( F `  k )  e.  CC )
5957, 58mulcld 8823 . . . . 5  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
j  e.  { x  e.  NN  |  x  ||  m }  /\  k  e.  { x  e.  NN  |  x  ||  ( m  /  j ) } ) )  ->  (
( mmu `  j
)  x.  ( F `
 k ) )  e.  CC )
6056, 59fsumdvdsdiag 20386 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ j  e.  { x  e.  NN  |  x  ||  m } sum_ k  e.  { x  e.  NN  |  x  ||  ( m  /  j
) }  ( ( mmu `  j )  x.  ( F `  k ) )  = 
sum_ k  e.  {
x  e.  NN  |  x  ||  m } sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( ( mmu `  j )  x.  ( F `  k ) ) )
61 ssrab2 3233 . . . . . . . . . 10  |-  { x  e.  NN  |  x  ||  m }  C_  NN
62 dvdsdivcl 20383 . . . . . . . . . . 11  |-  ( ( m  e.  NN  /\  k  e.  { x  e.  NN  |  x  ||  m } )  ->  (
m  /  k )  e.  { x  e.  NN  |  x  ||  m } )
6362adantll 697 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  k )  e. 
{ x  e.  NN  |  x  ||  m }
)
6461, 63sseldi 3153 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( m  /  k )  e.  NN )
65 musum 20393 . . . . . . . . 9  |-  ( ( m  /  k )  e.  NN  ->  sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) }  ( mmu `  j
)  =  if ( ( m  /  k
)  =  1 ,  1 ,  0 ) )
6664, 65syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  sum_ j  e. 
{ x  e.  NN  |  x  ||  ( m  /  k ) }  ( mmu `  j
)  =  if ( ( m  /  k
)  =  1 ,  1 ,  0 ) )
6766oveq1d 5807 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( mmu `  j )  x.  ( F `  k )
)  =  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  x.  ( F `
 k ) ) )
68 fzfid 11001 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 1 ... ( m  / 
k ) )  e. 
Fin )
69 sgmss 20306 . . . . . . . . . 10  |-  ( ( m  /  k )  e.  NN  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  C_  (
1 ... ( m  / 
k ) ) )
7064, 69syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  C_  (
1 ... ( m  / 
k ) ) )
71 ssfi 7051 . . . . . . . . 9  |-  ( ( ( 1 ... (
m  /  k ) )  e.  Fin  /\  { x  e.  NN  |  x  ||  ( m  / 
k ) }  C_  ( 1 ... (
m  /  k ) ) )  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  e.  Fin )
7268, 70, 71syl2anc 645 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  { x  e.  NN  |  x  ||  ( m  /  k
) }  e.  Fin )
731adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  F : NN
--> CC )
7461sseli 3151 . . . . . . . . 9  |-  ( k  e.  { x  e.  NN  |  x  ||  m }  ->  k  e.  NN )
7573, 74, 51syl2an 465 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( F `  k )  e.  CC )
76 ssrab2 3233 . . . . . . . . . . 11  |-  { x  e.  NN  |  x  ||  ( m  /  k
) }  C_  NN
77 simpr 449 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  j  e.  { x  e.  NN  |  x  ||  ( m  / 
k ) } )
7876, 77sseldi 3153 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  j  e.  NN )
7978, 45syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  ( mmu `  j )  e.  ZZ )
8079zcnd 10085 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m } )  /\  j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) } )  ->  ( mmu `  j )  e.  CC )
8172, 75, 80fsummulc1 12212 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( mmu `  j )  x.  ( F `  k )
)  =  sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k ) }  ( ( mmu `  j )  x.  ( F `  k )
) )
82 oveq1 5799 . . . . . . . . 9  |-  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  =  1  -> 
( if ( ( m  /  k )  =  1 ,  1 ,  0 )  x.  ( F `  k
) )  =  ( 1  x.  ( F `
 k ) ) )
83 oveq1 5799 . . . . . . . . 9  |-  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  =  0  -> 
( if ( ( m  /  k )  =  1 ,  1 ,  0 )  x.  ( F `  k
) )  =  ( 0  x.  ( F `
 k ) ) )
8482, 83ifsb 3548 . . . . . . . 8  |-  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  x.  ( F `
 k ) )  =  if ( ( m  /  k )  =  1 ,  ( 1  x.  ( F `
 k ) ) ,  ( 0  x.  ( F `  k
) ) )
85 nncn 9722 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  m  e.  CC )
8685ad2antlr 710 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  m  e.  CC )
8774adantl 454 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  k  e.  NN )
8887nncnd 9730 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  k  e.  CC )
89 ax-1cn 8763 . . . . . . . . . . . 12  |-  1  e.  CC
9089a1i 12 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  1  e.  CC )
9187nnne0d 9758 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  k  =/=  0 )
9286, 88, 90, 91divmuld 9526 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
m  /  k )  =  1  <->  ( k  x.  1 )  =  m ) )
9388mulid1d 8820 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( k  x.  1 )  =  k )
9493eqeq1d 2266 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
k  x.  1 )  =  m  <->  k  =  m ) )
9592, 94bitrd 246 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( (
m  /  k )  =  1  <->  k  =  m ) )
9675mulid2d 8821 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 1  x.  ( F `  k ) )  =  ( F `  k
) )
9775mul02d 8978 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( 0  x.  ( F `  k ) )  =  0 )
9895, 96, 97ifbieq12d 3561 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  if (
( m  /  k
)  =  1 ,  ( 1  x.  ( F `  k )
) ,  ( 0  x.  ( F `  k ) ) )  =  if ( k  =  m ,  ( F `  k ) ,  0 ) )
9984, 98syl5eq 2302 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  ( if ( ( m  / 
k )  =  1 ,  1 ,  0 )  x.  ( F `
 k ) )  =  if ( k  =  m ,  ( F `  k ) ,  0 ) )
10067, 81, 993eqtr3d 2298 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { x  e.  NN  |  x  ||  m }
)  ->  sum_ j  e. 
{ x  e.  NN  |  x  ||  ( m  /  k ) }  ( ( mmu `  j )  x.  ( F `  k )
)  =  if ( k  =  m ,  ( F `  k
) ,  0 ) )
101100sumeq2dv 12141 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  m } sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( ( mmu `  j )  x.  ( F `  k ) )  = 
sum_ k  e.  {
x  e.  NN  |  x  ||  m } if ( k  =  m ,  ( F `  k ) ,  0 ) )
10256nnzd 10083 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
103 iddvds 12504 . . . . . . . . 9  |-  ( m  e.  ZZ  ->  m  ||  m )
104102, 103syl 17 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  m  ||  m )
105 breq1 4000 . . . . . . . . 9  |-  ( x  =  m  ->  (
x  ||  m  <->  m  ||  m
) )
106105elrab 2898 . . . . . . . 8  |-  ( m  e.  { x  e.  NN  |  x  ||  m }  <->  ( m  e.  NN  /\  m  ||  m ) )
10756, 104, 106sylanbrc 648 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  m  e. 
{ x  e.  NN  |  x  ||  m }
)
108107snssd 3734 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  { m }  C_  { x  e.  NN  |  x  ||  m } )
109108sselda 3155 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { m } )  ->  k  e.  {
x  e.  NN  |  x  ||  m } )
110109, 75syldan 458 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { m } )  ->  ( F `  k )  e.  CC )
111 0cn 8799 . . . . . . 7  |-  0  e.  CC
112 ifcl 3575 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  0  e.  CC )  ->  if ( k  =  m ,  ( F `
 k ) ,  0 )  e.  CC )
113110, 111, 112sylancl 646 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  { m } )  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  e.  CC )
114 eldifsni 3724 . . . . . . . . 9  |-  ( k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } )  ->  k  =/=  m )
115114adantl 454 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } ) )  -> 
k  =/=  m )
116115neneqd 2437 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } ) )  ->  -.  k  =  m
)
117 iffalse 3546 . . . . . . 7  |-  ( -.  k  =  m  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  =  0 )
118116, 117syl 17 . . . . . 6  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( { x  e.  NN  |  x  ||  m }  \  { m } ) )  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  =  0 )
119 fzfid 11001 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( 1 ... m )  e. 
Fin )
120 sgmss 20306 . . . . . . . 8  |-  ( m  e.  NN  ->  { x  e.  NN  |  x  ||  m }  C_  ( 1 ... m ) )
121120adantl 454 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  { x  e.  NN  |  x  ||  m }  C_  ( 1 ... m ) )
122 ssfi 7051 . . . . . . 7  |-  ( ( ( 1 ... m
)  e.  Fin  /\  { x  e.  NN  |  x  ||  m }  C_  ( 1 ... m
) )  ->  { x  e.  NN  |  x  ||  m }  e.  Fin )
123119, 121, 122syl2anc 645 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  { x  e.  NN  |  x  ||  m }  e.  Fin )
124108, 113, 118, 123fsumss 12163 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { m } if ( k  =  m ,  ( F `  k ) ,  0 )  =  sum_ k  e.  { x  e.  NN  |  x  ||  m } if ( k  =  m ,  ( F `  k ) ,  0 ) )
125 ffvelrn 5597 . . . . . . 7  |-  ( ( F : NN --> CC  /\  m  e.  NN )  ->  ( F `  m
)  e.  CC )
1261, 125sylan 459 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
127 iftrue 3545 . . . . . . . 8  |-  ( k  =  m  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  =  ( F `
 k ) )
128 fveq2 5458 . . . . . . . 8  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
129127, 128eqtrd 2290 . . . . . . 7  |-  ( k  =  m  ->  if ( k  =  m ,  ( F `  k ) ,  0 )  =  ( F `
 m ) )
130129sumsn 12178 . . . . . 6  |-  ( ( m  e.  NN  /\  ( F `  m )  e.  CC )  ->  sum_ k  e.  { m } if ( k  =  m ,  ( F `
 k ) ,  0 )  =  ( F `  m ) )
13156, 126, 130syl2anc 645 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { m } if ( k  =  m ,  ( F `  k ) ,  0 )  =  ( F `
 m ) )
132101, 124, 1313eqtr2d 2296 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  m } sum_ j  e.  { x  e.  NN  |  x  ||  ( m  /  k
) }  ( ( mmu `  j )  x.  ( F `  k ) )  =  ( F `  m
) )
13355, 60, 1323eqtrd 2294 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) )  =  ( F `
 m ) )
134133mpteq2dva 4080 . 2  |-  ( ph  ->  ( m  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  m }  ( (
mmu `  j )  x.  ( G `  (
m  /  j ) ) ) )  =  ( m  e.  NN  |->  ( F `  m ) ) )
1352, 134eqtr4d 2293 1  |-  ( ph  ->  F  =  ( m  e.  NN  |->  sum_ j  e.  { x  e.  NN  |  x  ||  m } 
( ( mmu `  j )  x.  ( G `  ( m  /  j ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   {crab 2522    \ cdif 3124    C_ wss 3127   ifcif 3539   {csn 3614   class class class wbr 3997    e. cmpt 4051   -->wf 4669   ` cfv 4673  (class class class)co 5792   Fincfn 6831   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    x. cmul 8710    < clt 8835    / cdiv 9391   NNcn 9714   ZZcz 9991   ...cfz 10748   sum_csu 12123    || cdivides 12493   mmucmu 20294
This theorem is referenced by:  dchrvmasumlem1  20606  logsqvma2  20654
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-disj 3968  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-q 10284  df-rp 10322  df-fz 10749  df-fzo 10837  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-fac 11255  df-bc 11282  df-hash 11304  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-clim 11927  df-sum 12124  df-divides 12494  df-gcd 12648  df-prime 12721  df-pc 12852  df-mu 20300
  Copyright terms: Public domain W3C validator