MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul01 Unicode version

Theorem mul01 9177
Description: Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul01  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )

Proof of Theorem mul01
StepHypRef Expression
1 0cn 9017 . . 3  |-  0  e.  CC
2 mulcom 9009 . . 3  |-  ( ( A  e.  CC  /\  0  e.  CC )  ->  ( A  x.  0 )  =  ( 0  x.  A ) )
31, 2mpan2 653 . 2  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  ( 0  x.  A ) )
4 mul02 9176 . 2  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
53, 4eqtrd 2419 1  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717  (class class class)co 6020   CCcc 8921   0cc0 8923    x. cmul 8928
This theorem is referenced by:  addid1  9178  cnegex  9179  mul01i  9188  mul01d  9197  bernneq  11432  bcval5  11536  geo2lim  12579  efexp  12629  gcdmultiplez  12978  plymul0or  20065  fta1lem  20091  1cxp  20430  cxpmul2  20447  efrlim  20675  lgsne0  20984  vcz  21897  blocnilem  22153  hvmul0  22374  ocsh  22633  0lnfn  23336  nlelshi  23411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-ltxr 9058
  Copyright terms: Public domain W3C validator