MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02 Unicode version

Theorem mul02 8923
Description: Multiplication by  0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )

Proof of Theorem mul02
StepHypRef Expression
1 cnre 8769 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 recn 8760 . . . . . . 7  |-  ( x  e.  RR  ->  x  e.  CC )
3 ax-icn 8729 . . . . . . . 8  |-  _i  e.  CC
4 recn 8760 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
5 mulcl 8754 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
63, 4, 5sylancr 647 . . . . . . 7  |-  ( y  e.  RR  ->  (
_i  x.  y )  e.  CC )
7 0cn 8764 . . . . . . . 8  |-  0  e.  CC
8 adddi 8759 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  x  e.  CC  /\  (
_i  x.  y )  e.  CC )  ->  (
0  x.  ( x  +  ( _i  x.  y ) ) )  =  ( ( 0  x.  x )  +  ( 0  x.  (
_i  x.  y )
) ) )
97, 8mp3an1 1269 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC )  ->  ( 0  x.  ( x  +  ( _i  x.  y ) ) )  =  ( ( 0  x.  x
)  +  ( 0  x.  ( _i  x.  y ) ) ) )
102, 6, 9syl2an 465 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  x.  (
x  +  ( _i  x.  y ) ) )  =  ( ( 0  x.  x )  +  ( 0  x.  ( _i  x.  y
) ) ) )
11 mul02lem2 8922 . . . . . . 7  |-  ( x  e.  RR  ->  (
0  x.  x )  =  0 )
12 mul12 8911 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  _i  e.  CC  /\  y  e.  CC )  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  ( 0  x.  y
) ) )
137, 3, 12mp3an12 1272 . . . . . . . . 9  |-  ( y  e.  CC  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  ( 0  x.  y
) ) )
144, 13syl 17 . . . . . . . 8  |-  ( y  e.  RR  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  ( 0  x.  y
) ) )
15 mul02lem2 8922 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
0  x.  y )  =  0 )
1615oveq2d 5773 . . . . . . . 8  |-  ( y  e.  RR  ->  (
_i  x.  ( 0  x.  y ) )  =  ( _i  x.  0 ) )
1714, 16eqtrd 2288 . . . . . . 7  |-  ( y  e.  RR  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  0 ) )
1811, 17oveqan12d 5776 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( 0  x.  x )  +  ( 0  x.  ( _i  x.  y ) ) )  =  ( 0  +  ( _i  x.  0 ) ) )
1910, 18eqtrd 2288 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  x.  (
x  +  ( _i  x.  y ) ) )  =  ( 0  +  ( _i  x.  0 ) ) )
20 cnre 8769 . . . . . . . 8  |-  ( 0  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) ) )
217, 20ax-mp 10 . . . . . . 7  |-  E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) )
22 oveq2 5765 . . . . . . . . . 10  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  0 )  =  ( 0  x.  ( x  +  ( _i  x.  y ) ) ) )
2322eqeq1d 2264 . . . . . . . . 9  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
( 0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) )  <->  ( 0  x.  ( x  +  ( _i  x.  y
) ) )  =  ( 0  +  ( _i  x.  0 ) ) ) )
2419, 23syl5ibrcom 215 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  =  ( x  +  ( _i  x.  y ) )  ->  ( 0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) ) ) )
2524rexlimivv 2643 . . . . . . 7  |-  ( E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) ) )
2621, 25ax-mp 10 . . . . . 6  |-  ( 0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) )
27 0re 8771 . . . . . . 7  |-  0  e.  RR
28 mul02lem2 8922 . . . . . . 7  |-  ( 0  e.  RR  ->  (
0  x.  0 )  =  0 )
2927, 28ax-mp 10 . . . . . 6  |-  ( 0  x.  0 )  =  0
3026, 29eqtr3i 2278 . . . . 5  |-  ( 0  +  ( _i  x.  0 ) )  =  0
3119, 30syl6eq 2304 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  x.  (
x  +  ( _i  x.  y ) ) )  =  0 )
32 oveq2 5765 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  A )  =  ( 0  x.  ( x  +  ( _i  x.  y ) ) ) )
3332eqeq1d 2264 . . . 4  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
( 0  x.  A
)  =  0  <->  (
0  x.  ( x  +  ( _i  x.  y ) ) )  =  0 ) )
3431, 33syl5ibrcom 215 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  ->  ( 0  x.  A )  =  0 ) )
3534rexlimivv 2643 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  A )  =  0 )
361, 35syl 17 1  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   E.wrex 2517  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670   _ici 8672    + caddc 8673    x. cmul 8675
This theorem is referenced by:  mul01  8924  cnegex2  8927  mul02i  8934  mul02d  8943  bcval5  11261  fsumconst  12182  demoivreALT  12408  cnfldmulg  16333  itg2mulc  19029  dvcmulf  19221  coe0  19564  plymul0or  19588  sineq0  19816  jensen  20210  musumsum  20359  lgsne0  20499  brbtwn2  23873  ax5seglem4  23900  axeuclidlem  23930  axeuclid  23931  axcontlem2  23933  axcontlem4  23935  cnegvex2  24992  expgrowth  26884
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-po 4251  df-so 4252  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-ltxr 8805
  Copyright terms: Public domain W3C validator