MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02 Unicode version

Theorem mul02 8944
Description: Multiplication by  0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )

Proof of Theorem mul02
StepHypRef Expression
1 cnre 8790 . 2  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
2 recn 8781 . . . . . . 7  |-  ( x  e.  RR  ->  x  e.  CC )
3 ax-icn 8750 . . . . . . . 8  |-  _i  e.  CC
4 recn 8781 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
5 mulcl 8775 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
63, 4, 5sylancr 647 . . . . . . 7  |-  ( y  e.  RR  ->  (
_i  x.  y )  e.  CC )
7 0cn 8785 . . . . . . . 8  |-  0  e.  CC
8 adddi 8780 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  x  e.  CC  /\  (
_i  x.  y )  e.  CC )  ->  (
0  x.  ( x  +  ( _i  x.  y ) ) )  =  ( ( 0  x.  x )  +  ( 0  x.  (
_i  x.  y )
) ) )
97, 8mp3an1 1269 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( _i  x.  y
)  e.  CC )  ->  ( 0  x.  ( x  +  ( _i  x.  y ) ) )  =  ( ( 0  x.  x
)  +  ( 0  x.  ( _i  x.  y ) ) ) )
102, 6, 9syl2an 465 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  x.  (
x  +  ( _i  x.  y ) ) )  =  ( ( 0  x.  x )  +  ( 0  x.  ( _i  x.  y
) ) ) )
11 mul02lem2 8943 . . . . . . 7  |-  ( x  e.  RR  ->  (
0  x.  x )  =  0 )
12 mul12 8932 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  _i  e.  CC  /\  y  e.  CC )  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  ( 0  x.  y
) ) )
137, 3, 12mp3an12 1272 . . . . . . . . 9  |-  ( y  e.  CC  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  ( 0  x.  y
) ) )
144, 13syl 17 . . . . . . . 8  |-  ( y  e.  RR  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  ( 0  x.  y
) ) )
15 mul02lem2 8943 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
0  x.  y )  =  0 )
1615oveq2d 5794 . . . . . . . 8  |-  ( y  e.  RR  ->  (
_i  x.  ( 0  x.  y ) )  =  ( _i  x.  0 ) )
1714, 16eqtrd 2288 . . . . . . 7  |-  ( y  e.  RR  ->  (
0  x.  ( _i  x.  y ) )  =  ( _i  x.  0 ) )
1811, 17oveqan12d 5797 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( 0  x.  x )  +  ( 0  x.  ( _i  x.  y ) ) )  =  ( 0  +  ( _i  x.  0 ) ) )
1910, 18eqtrd 2288 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  x.  (
x  +  ( _i  x.  y ) ) )  =  ( 0  +  ( _i  x.  0 ) ) )
20 cnre 8790 . . . . . . . 8  |-  ( 0  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) ) )
217, 20ax-mp 10 . . . . . . 7  |-  E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y ) )
22 oveq2 5786 . . . . . . . . . 10  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  0 )  =  ( 0  x.  ( x  +  ( _i  x.  y ) ) ) )
2322eqeq1d 2264 . . . . . . . . 9  |-  ( 0  =  ( x  +  ( _i  x.  y
) )  ->  (
( 0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) )  <->  ( 0  x.  ( x  +  ( _i  x.  y
) ) )  =  ( 0  +  ( _i  x.  0 ) ) ) )
2419, 23syl5ibrcom 215 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  =  ( x  +  ( _i  x.  y ) )  ->  ( 0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) ) ) )
2524rexlimivv 2645 . . . . . . 7  |-  ( E. x  e.  RR  E. y  e.  RR  0  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) ) )
2621, 25ax-mp 10 . . . . . 6  |-  ( 0  x.  0 )  =  ( 0  +  ( _i  x.  0 ) )
27 0re 8792 . . . . . . 7  |-  0  e.  RR
28 mul02lem2 8943 . . . . . . 7  |-  ( 0  e.  RR  ->  (
0  x.  0 )  =  0 )
2927, 28ax-mp 10 . . . . . 6  |-  ( 0  x.  0 )  =  0
3026, 29eqtr3i 2278 . . . . 5  |-  ( 0  +  ( _i  x.  0 ) )  =  0
3119, 30syl6eq 2304 . . . 4  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( 0  x.  (
x  +  ( _i  x.  y ) ) )  =  0 )
32 oveq2 5786 . . . . 5  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  A )  =  ( 0  x.  ( x  +  ( _i  x.  y ) ) ) )
3332eqeq1d 2264 . . . 4  |-  ( A  =  ( x  +  ( _i  x.  y
) )  ->  (
( 0  x.  A
)  =  0  <->  (
0  x.  ( x  +  ( _i  x.  y ) ) )  =  0 ) )
3431, 33syl5ibrcom 215 . . 3  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  ->  ( 0  x.  A )  =  0 ) )
3534rexlimivv 2645 . 2  |-  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  (
0  x.  A )  =  0 )
361, 35syl 17 1  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   E.wrex 2517  (class class class)co 5778   CCcc 8689   RRcr 8690   0cc0 8691   _ici 8693    + caddc 8694    x. cmul 8696
This theorem is referenced by:  mul01  8945  cnegex2  8948  mul02i  8955  mul02d  8964  bcval5  11282  fsumconst  12203  demoivreALT  12429  cnfldmulg  16354  itg2mulc  19050  dvcmulf  19242  coe0  19585  plymul0or  19609  sineq0  19837  jensen  20231  musumsum  20380  lgsne0  20520  brbtwn2  23894  ax5seglem4  23921  axeuclidlem  23951  axeuclid  23952  axcontlem2  23954  axcontlem4  23956  cnegvex2  25013  expgrowth  26905
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-po 4272  df-so 4273  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-er 6614  df-en 6818  df-dom 6819  df-sdom 6820  df-pnf 8823  df-mnf 8824  df-ltxr 8826
  Copyright terms: Public domain W3C validator