MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul0or Unicode version

Theorem mul0or 9424
Description: If a product is zero, one of its factors must be zero. Theorem I.11 of [Apostol] p. 18. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mul0or  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  <-> 
( A  =  0  \/  B  =  0 ) ) )

Proof of Theorem mul0or
StepHypRef Expression
1 simpr 447 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
21adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  B  =/=  0
)  ->  B  e.  CC )
32mul02d 9026 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  B  =/=  0
)  ->  ( 0  x.  B )  =  0 )
43eqeq2d 2307 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  B  =/=  0
)  ->  ( ( A  x.  B )  =  ( 0  x.  B )  <->  ( A  x.  B )  =  0 ) )
5 simpl 443 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
65adantr 451 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  B  =/=  0
)  ->  A  e.  CC )
7 0cn 8847 . . . . . . . . . 10  |-  0  e.  CC
87a1i 10 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  B  =/=  0
)  ->  0  e.  CC )
9 simpr 447 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  B  =/=  0
)  ->  B  =/=  0 )
106, 8, 2, 9mulcan2d 9418 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  B  =/=  0
)  ->  ( ( A  x.  B )  =  ( 0  x.  B )  <->  A  = 
0 ) )
114, 10bitr3d 246 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  B  =/=  0
)  ->  ( ( A  x.  B )  =  0  <->  A  = 
0 ) )
1211biimpd 198 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  B  =/=  0
)  ->  ( ( A  x.  B )  =  0  ->  A  =  0 ) )
1312impancom 427 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( A  x.  B )  =  0 )  ->  ( B  =/=  0  ->  A  =  0 ) )
1413necon1bd 2527 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( A  x.  B )  =  0 )  ->  ( -.  A  =  0  ->  B  =  0 ) )
1514orrd 367 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( A  x.  B )  =  0 )  ->  ( A  =  0  \/  B  =  0 ) )
1615ex 423 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  ->  ( A  =  0  \/  B  =  0 ) ) )
171mul02d 9026 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 0  x.  B
)  =  0 )
18 oveq1 5881 . . . . 5  |-  ( A  =  0  ->  ( A  x.  B )  =  ( 0  x.  B ) )
1918eqeq1d 2304 . . . 4  |-  ( A  =  0  ->  (
( A  x.  B
)  =  0  <->  (
0  x.  B )  =  0 ) )
2017, 19syl5ibrcom 213 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  0  ->  ( A  x.  B )  =  0 ) )
215mul01d 9027 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  0 )  =  0 )
22 oveq2 5882 . . . . 5  |-  ( B  =  0  ->  ( A  x.  B )  =  ( A  x.  0 ) )
2322eqeq1d 2304 . . . 4  |-  ( B  =  0  ->  (
( A  x.  B
)  =  0  <->  ( A  x.  0 )  =  0 ) )
2421, 23syl5ibrcom 213 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  =  0  ->  ( A  x.  B )  =  0 ) )
2520, 24jaod 369 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  =  0  \/  B  =  0 )  ->  ( A  x.  B )  =  0 ) )
2616, 25impbid 183 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  <-> 
( A  =  0  \/  B  =  0 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459  (class class class)co 5874   CCcc 8751   0cc0 8753    x. cmul 8758
This theorem is referenced by:  mulne0b  9425  msq0i  9431  mul0ori  9432  msq0d  9433  mul0ord  9434  coseq1  19906  efrlim  20280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056
  Copyright terms: Public domain W3C validator