MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul12 Unicode version

Theorem mul12 8911
Description: Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
mul12  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
) )

Proof of Theorem mul12
StepHypRef Expression
1 mulcom 8756 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
21oveq1d 5772 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  x.  C
)  =  ( ( B  x.  A )  x.  C ) )
323adant3 980 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( ( B  x.  A )  x.  C ) )
4 mulass 8758 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
5 mulass 8758 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  C  e.  CC )  ->  (
( B  x.  A
)  x.  C )  =  ( B  x.  ( A  x.  C
) ) )
653com12 1160 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  x.  A
)  x.  C )  =  ( B  x.  ( A  x.  C
) ) )
73, 4, 63eqtr3d 2296 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621  (class class class)co 5757   CCcc 8668    x. cmul 8675
This theorem is referenced by:  mul02  8923  mul12i  8940  mul12d  8954  mulre  11536  sqreulem  11773  demoivre  12407  demoivreALT  12408  dvdscmul  12482  dvdscmulr  12484  dvdstr  12489  ablfacrp  15228  nmoleub2lem3  18523  sinperlem  19775  coskpi  19815  sineq0  19816  efif1olem4  19834  rpvmasum2  20588  fsumcube  24135  expgrowthi  26882
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-mulcom 8734  ax-mulass 8736
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-rex 2521  df-rab 2523  df-v 2742  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-xp 4640  df-cnv 4642  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fv 4654  df-ov 5760
  Copyright terms: Public domain W3C validator