MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul12 Unicode version

Theorem mul12 8978
Description: Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
mul12  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
) )

Proof of Theorem mul12
StepHypRef Expression
1 mulcom 8823 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
21oveq1d 5873 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  x.  C
)  =  ( ( B  x.  A )  x.  C ) )
323adant3 975 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( ( B  x.  A )  x.  C ) )
4 mulass 8825 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
5 mulass 8825 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  C  e.  CC )  ->  (
( B  x.  A
)  x.  C )  =  ( B  x.  ( A  x.  C
) ) )
653com12 1155 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  x.  A
)  x.  C )  =  ( B  x.  ( A  x.  C
) ) )
73, 4, 63eqtr3d 2323 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  x.  C ) )  =  ( B  x.  ( A  x.  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684  (class class class)co 5858   CCcc 8735    x. cmul 8742
This theorem is referenced by:  mul02  8990  mul12i  9007  mul12d  9021  mulre  11606  sqreulem  11843  demoivre  12480  demoivreALT  12481  dvdscmul  12555  dvdscmulr  12557  dvdstr  12562  ablfacrp  15301  nmoleub2lem3  18596  sinperlem  19848  coskpi  19888  sineq0  19889  efif1olem4  19907  rpvmasum2  20661  fsumcube  24206  expgrowthi  26962
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-mulcom 8801  ax-mulass 8803
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator