MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muladd Unicode version

Theorem muladd 9180
Description: Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
muladd  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )

Proof of Theorem muladd
StepHypRef Expression
1 addcl 8787 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
2 adddi 8794 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  C  e.  CC  /\  D  e.  CC )  ->  (
( A  +  B
)  x.  ( C  +  D ) )  =  ( ( ( A  +  B )  x.  C )  +  ( ( A  +  B )  x.  D
) ) )
323expb 1157 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B )  x.  ( C  +  D
) )  =  ( ( ( A  +  B )  x.  C
)  +  ( ( A  +  B )  x.  D ) ) )
41, 3sylan 459 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  +  B
)  x.  C )  +  ( ( A  +  B )  x.  D ) ) )
5 adddir 8798 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C
) ) )
653expa 1156 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  C  e.  CC )  ->  ( ( A  +  B )  x.  C )  =  ( ( A  x.  C
)  +  ( B  x.  C ) ) )
76adantrr 700 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  C
)  =  ( ( A  x.  C )  +  ( B  x.  C ) ) )
8 adddir 8798 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  (
( A  +  B
)  x.  D )  =  ( ( A  x.  D )  +  ( B  x.  D
) ) )
983expa 1156 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  D  e.  CC )  ->  ( ( A  +  B )  x.  D )  =  ( ( A  x.  D
)  +  ( B  x.  D ) ) )
109adantrl 699 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  D
)  =  ( ( A  x.  D )  +  ( B  x.  D ) ) )
117, 10oveq12d 5810 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  +  B )  x.  C )  +  ( ( A  +  B
)  x.  D ) )  =  ( ( ( A  x.  C
)  +  ( B  x.  C ) )  +  ( ( A  x.  D )  +  ( B  x.  D
) ) ) )
12 mulcl 8789 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  e.  CC )
1312ad2ant2r 730 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  x.  C
)  e.  CC )
14 mulcl 8789 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  e.  CC )
1514ad2ant2lr 731 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  x.  C
)  e.  CC )
16 mulcl 8789 . . . . . . 7  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  D
)  e.  CC )
17 mulcl 8789 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( B  x.  D
)  e.  CC )
18 addcl 8787 . . . . . . 7  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( B  x.  D
)  e.  CC )  ->  ( ( A  x.  D )  +  ( B  x.  D
) )  e.  CC )
1916, 17, 18syl2an 465 . . . . . 6  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  D )  +  ( B  x.  D ) )  e.  CC )
2019anandirs 807 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  D  e.  CC )  ->  ( ( A  x.  D )  +  ( B  x.  D
) )  e.  CC )
2120adantrl 699 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  D )  +  ( B  x.  D ) )  e.  CC )
2213, 15, 21add32d 9002 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( B  x.  C
) )  +  ( ( A  x.  D
)  +  ( B  x.  D ) ) )  =  ( ( ( A  x.  C
)  +  ( ( A  x.  D )  +  ( B  x.  D ) ) )  +  ( B  x.  C ) ) )
23 mulcom 8791 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( B  x.  D
)  =  ( D  x.  B ) )
2423ad2ant2l 729 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  x.  D
)  =  ( D  x.  B ) )
2524oveq2d 5808 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( A  x.  D
) )  +  ( B  x.  D ) )  =  ( ( ( A  x.  C
)  +  ( A  x.  D ) )  +  ( D  x.  B ) ) )
2616ad2ant2rl 732 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  x.  D
)  e.  CC )
2717ad2ant2l 729 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  x.  D
)  e.  CC )
2813, 26, 27addassd 8825 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( A  x.  D
) )  +  ( B  x.  D ) )  =  ( ( A  x.  C )  +  ( ( A  x.  D )  +  ( B  x.  D
) ) ) )
29 mulcl 8789 . . . . . . . 8  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( D  x.  B
)  e.  CC )
3029ancoms 441 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC )  ->  ( D  x.  B
)  e.  CC )
3130ad2ant2l 729 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( D  x.  B
)  e.  CC )
3213, 26, 31add32d 9002 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( A  x.  D
) )  +  ( D  x.  B ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( A  x.  D ) ) )
3325, 28, 323eqtr3d 2298 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( ( A  x.  D
)  +  ( B  x.  D ) ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( A  x.  D ) ) )
34 mulcom 8791 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
3534ad2ant2lr 731 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  x.  C
)  =  ( C  x.  B ) )
3633, 35oveq12d 5810 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( ( A  x.  D )  +  ( B  x.  D ) ) )  +  ( B  x.  C ) )  =  ( ( ( ( A  x.  C )  +  ( D  x.  B ) )  +  ( A  x.  D ) )  +  ( C  x.  B ) ) )
37 addcl 8787 . . . . . 6  |-  ( ( ( A  x.  C
)  e.  CC  /\  ( D  x.  B
)  e.  CC )  ->  ( ( A  x.  C )  +  ( D  x.  B
) )  e.  CC )
3812, 30, 37syl2an 465 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC )  /\  ( B  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
3938an4s 802 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  C )  +  ( D  x.  B ) )  e.  CC )
40 mulcl 8789 . . . . . 6  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  x.  B
)  e.  CC )
4140ancoms 441 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  B
)  e.  CC )
4241ad2ant2lr 731 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  x.  B
)  e.  CC )
4339, 26, 42addassd 8825 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( ( A  x.  C )  +  ( D  x.  B ) )  +  ( A  x.  D
) )  +  ( C  x.  B ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
4422, 36, 433eqtrd 2294 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  C )  +  ( B  x.  C
) )  +  ( ( A  x.  D
)  +  ( B  x.  D ) ) )  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
454, 11, 443eqtrd 2294 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621  (class class class)co 5792   CCcc 8703    + caddc 8708    x. cmul 8710
This theorem is referenced by:  mulsub  9190  muladdi  9198  muladdd  9205  sqabsadd  11732  demoivreALT  12443
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-ltxr 8840
  Copyright terms: Public domain W3C validator