MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulassnq Structured version   Unicode version

Theorem mulassnq 8867
Description: Multiplication of positive fractions is associative. (Contributed by NM, 1-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulassnq  |-  ( ( A  .Q  B )  .Q  C )  =  ( A  .Q  ( B  .Q  C ) )

Proof of Theorem mulassnq
StepHypRef Expression
1 mulasspi 8805 . . . . . . 7  |-  ( ( ( 1st `  A
)  .N  ( 1st `  B ) )  .N  ( 1st `  C
) )  =  ( ( 1st `  A
)  .N  ( ( 1st `  B )  .N  ( 1st `  C
) ) )
2 mulasspi 8805 . . . . . . 7  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( 2nd `  C
) )  =  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )
31, 2opeq12i 4013 . . . . . 6  |-  <. (
( ( 1st `  A
)  .N  ( 1st `  B ) )  .N  ( 1st `  C
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( 2nd `  C
) ) >.  =  <. ( ( 1st `  A
)  .N  ( ( 1st `  B )  .N  ( 1st `  C
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
4 elpqn 8833 . . . . . . . . . 10  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
543ad2ant1 979 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  e.  ( N.  X.  N. ) )
6 elpqn 8833 . . . . . . . . . 10  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
763ad2ant2 980 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  B  e.  ( N.  X.  N. ) )
8 mulpipq2 8847 . . . . . . . . 9  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
95, 7, 8syl2anc 644 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
10 relxp 5012 . . . . . . . . 9  |-  Rel  ( N.  X.  N. )
11 elpqn 8833 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  C  e.  ( N.  X.  N. ) )
12113ad2ant3 981 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  e.  ( N.  X.  N. ) )
13 1st2nd 6422 . . . . . . . . 9  |-  ( ( Rel  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  C  =  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
1410, 12, 13sylancr 646 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  =  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
159, 14oveq12d 6128 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .pQ  B
)  .pQ  C )  =  ( <. (
( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.  .pQ  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
)
16 xp1st 6405 . . . . . . . . . 10  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
175, 16syl 16 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  A )  e. 
N. )
18 xp1st 6405 . . . . . . . . . 10  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
197, 18syl 16 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  B )  e. 
N. )
20 mulclpi 8801 . . . . . . . . 9  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 1st `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
2117, 19, 20syl2anc 644 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
22 xp2nd 6406 . . . . . . . . . 10  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
235, 22syl 16 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  A )  e. 
N. )
24 xp2nd 6406 . . . . . . . . . 10  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
257, 24syl 16 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  B )  e. 
N. )
26 mulclpi 8801 . . . . . . . . 9  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
2723, 25, 26syl2anc 644 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
28 xp1st 6405 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
2912, 28syl 16 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  C )  e. 
N. )
30 xp2nd 6406 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
3112, 30syl 16 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  C )  e. 
N. )
32 mulpipq 8848 . . . . . . . 8  |-  ( ( ( ( ( 1st `  A )  .N  ( 1st `  B ) )  e.  N.  /\  (
( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )  /\  (
( 1st `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. ) )  ->  ( <. (
( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.  .pQ  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )  =  <. ( ( ( 1st `  A )  .N  ( 1st `  B
) )  .N  ( 1st `  C ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  B
) )  .N  ( 2nd `  C ) )
>. )
3321, 27, 29, 31, 32syl22anc 1186 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( <. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.  .pQ  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )  =  <. ( ( ( 1st `  A )  .N  ( 1st `  B
) )  .N  ( 1st `  C ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  B
) )  .N  ( 2nd `  C ) )
>. )
3415, 33eqtrd 2474 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .pQ  B
)  .pQ  C )  =  <. ( ( ( 1st `  A )  .N  ( 1st `  B
) )  .N  ( 1st `  C ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  B
) )  .N  ( 2nd `  C ) )
>. )
35 1st2nd 6422 . . . . . . . . 9  |-  ( ( Rel  ( N.  X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
3610, 5, 35sylancr 646 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
37 mulpipq2 8847 . . . . . . . . 9  |-  ( ( B  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( B  .pQ  C )  = 
<. ( ( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)
387, 12, 37syl2anc 644 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( B  .pQ  C )  = 
<. ( ( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)
3936, 38oveq12d 6128 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  ( B  .pQ  C ) )  =  (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. (
( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
) )
40 mulclpi 8801 . . . . . . . . 9  |-  ( ( ( 1st `  B
)  e.  N.  /\  ( 1st `  C )  e.  N. )  -> 
( ( 1st `  B
)  .N  ( 1st `  C ) )  e. 
N. )
4119, 29, 40syl2anc 644 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  B
)  .N  ( 1st `  C ) )  e. 
N. )
42 mulclpi 8801 . . . . . . . . 9  |-  ( ( ( 2nd `  B
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
4325, 31, 42syl2anc 644 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
44 mulpipq 8848 . . . . . . . 8  |-  ( ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  /\  ( ( ( 1st `  B )  .N  ( 1st `  C ) )  e.  N.  /\  (
( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. ) )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. (
( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)  =  <. (
( 1st `  A
)  .N  ( ( 1st `  B )  .N  ( 1st `  C
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
)
4517, 23, 41, 43, 44syl22anc 1186 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. (
( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)  =  <. (
( 1st `  A
)  .N  ( ( 1st `  B )  .N  ( 1st `  C
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
)
4639, 45eqtrd 2474 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  ( B  .pQ  C ) )  =  <. ( ( 1st `  A
)  .N  ( ( 1st `  B )  .N  ( 1st `  C
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
)
473, 34, 463eqtr4a 2500 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .pQ  B
)  .pQ  C )  =  ( A  .pQ  ( B  .pQ  C ) ) )
4847fveq2d 5761 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( /Q `  ( ( A 
.pQ  B )  .pQ  C ) )  =  ( /Q `  ( A 
.pQ  ( B  .pQ  C ) ) ) )
49 mulerpq 8865 . . . 4  |-  ( ( /Q `  ( A 
.pQ  B ) )  .Q  ( /Q `  C ) )  =  ( /Q `  (
( A  .pQ  B
)  .pQ  C )
)
50 mulerpq 8865 . . . 4  |-  ( ( /Q `  A )  .Q  ( /Q `  ( B  .pQ  C ) ) )  =  ( /Q `  ( A 
.pQ  ( B  .pQ  C ) ) )
5148, 49, 503eqtr4g 2499 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( /Q `  ( A  .pQ  B ) )  .Q  ( /Q `  C ) )  =  ( ( /Q `  A )  .Q  ( /Q `  ( B  .pQ  C ) ) ) )
52 mulpqnq 8849 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( /Q
`  ( A  .pQ  B ) ) )
53523adant3 978 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  B )  =  ( /Q `  ( A  .pQ  B ) ) )
54 nqerid 8841 . . . . . 6  |-  ( C  e.  Q.  ->  ( /Q `  C )  =  C )
5554eqcomd 2447 . . . . 5  |-  ( C  e.  Q.  ->  C  =  ( /Q `  C ) )
56553ad2ant3 981 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  =  ( /Q `  C ) )
5753, 56oveq12d 6128 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .Q  B
)  .Q  C )  =  ( ( /Q
`  ( A  .pQ  B ) )  .Q  ( /Q `  C ) ) )
58 nqerid 8841 . . . . . 6  |-  ( A  e.  Q.  ->  ( /Q `  A )  =  A )
5958eqcomd 2447 . . . . 5  |-  ( A  e.  Q.  ->  A  =  ( /Q `  A ) )
60593ad2ant1 979 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  =  ( /Q `  A ) )
61 mulpqnq 8849 . . . . 5  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( B  .Q  C
)  =  ( /Q
`  ( B  .pQ  C ) ) )
62613adant1 976 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( B  .Q  C )  =  ( /Q `  ( B  .pQ  C ) ) )
6360, 62oveq12d 6128 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  ( B  .Q  C ) )  =  ( ( /Q `  A )  .Q  ( /Q `  ( B  .pQ  C ) ) ) )
6451, 57, 633eqtr4d 2484 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .Q  B
)  .Q  C )  =  ( A  .Q  ( B  .Q  C
) ) )
65 mulnqf 8857 . . . 4  |-  .Q  :
( Q.  X.  Q. )
--> Q.
6665fdmi 5625 . . 3  |-  dom  .Q  =  ( Q.  X.  Q. )
67 0nnq 8832 . . 3  |-  -.  (/)  e.  Q.
6866, 67ndmovass 6264 . 2  |-  ( -.  ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( ( A  .Q  B )  .Q  C
)  =  ( A  .Q  ( B  .Q  C ) ) )
6964, 68pm2.61i 159 1  |-  ( ( A  .Q  B )  .Q  C )  =  ( A  .Q  ( B  .Q  C ) )
Colors of variables: wff set class
Syntax hints:    /\ w3a 937    = wceq 1653    e. wcel 1727   <.cop 3841    X. cxp 4905   Rel wrel 4912   ` cfv 5483  (class class class)co 6110   1stc1st 6376   2ndc2nd 6377   N.cnpi 8750    .N cmi 8752    .pQ cmpq 8755   Q.cnq 8758   /Qcerq 8760    .Q cmq 8762
This theorem is referenced by:  recmulnq  8872  halfnq  8884  ltrnq  8887  addclprlem2  8925  mulclprlem  8927  mulasspr  8932  1idpr  8937  prlem934  8941  prlem936  8955  reclem3pr  8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-omul 6758  df-er 6934  df-ni 8780  df-mi 8782  df-lti 8783  df-mpq 8817  df-enq 8819  df-nq 8820  df-erq 8821  df-mq 8823  df-1nq 8824
  Copyright terms: Public domain W3C validator