MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulassnq Unicode version

Theorem mulassnq 8599
Description: Multiplication of positive fractions is associative. (Contributed by NM, 1-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulassnq  |-  ( ( A  .Q  B )  .Q  C )  =  ( A  .Q  ( B  .Q  C ) )

Proof of Theorem mulassnq
StepHypRef Expression
1 mulasspi 8537 . . . . . . 7  |-  ( ( ( 1st `  A
)  .N  ( 1st `  B ) )  .N  ( 1st `  C
) )  =  ( ( 1st `  A
)  .N  ( ( 1st `  B )  .N  ( 1st `  C
) ) )
2 mulasspi 8537 . . . . . . 7  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( 2nd `  C
) )  =  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )
31, 2opeq12i 3817 . . . . . 6  |-  <. (
( ( 1st `  A
)  .N  ( 1st `  B ) )  .N  ( 1st `  C
) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( 2nd `  C
) ) >.  =  <. ( ( 1st `  A
)  .N  ( ( 1st `  B )  .N  ( 1st `  C
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
4 elpqn 8565 . . . . . . . . . 10  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
543ad2ant1 976 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  e.  ( N.  X.  N. ) )
6 elpqn 8565 . . . . . . . . . 10  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
763ad2ant2 977 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  B  e.  ( N.  X.  N. ) )
8 mulpipq2 8579 . . . . . . . . 9  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
95, 7, 8syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
10 relxp 4810 . . . . . . . . 9  |-  Rel  ( N.  X.  N. )
11 elpqn 8565 . . . . . . . . . 10  |-  ( C  e.  Q.  ->  C  e.  ( N.  X.  N. ) )
12113ad2ant3 978 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  e.  ( N.  X.  N. ) )
13 1st2nd 6182 . . . . . . . . 9  |-  ( ( Rel  ( N.  X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  C  =  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
1410, 12, 13sylancr 644 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  =  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
159, 14oveq12d 5892 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .pQ  B
)  .pQ  C )  =  ( <. (
( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.  .pQ  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )
)
16 xp1st 6165 . . . . . . . . . 10  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
175, 16syl 15 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  A )  e. 
N. )
18 xp1st 6165 . . . . . . . . . 10  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
197, 18syl 15 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  B )  e. 
N. )
20 mulclpi 8533 . . . . . . . . 9  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 1st `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
2117, 19, 20syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
22 xp2nd 6166 . . . . . . . . . 10  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
235, 22syl 15 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  A )  e. 
N. )
24 xp2nd 6166 . . . . . . . . . 10  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
257, 24syl 15 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  B )  e. 
N. )
26 mulclpi 8533 . . . . . . . . 9  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
2723, 25, 26syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
28 xp1st 6165 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
2912, 28syl 15 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  C )  e. 
N. )
30 xp2nd 6166 . . . . . . . . 9  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
3112, 30syl 15 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  C )  e. 
N. )
32 mulpipq 8580 . . . . . . . 8  |-  ( ( ( ( ( 1st `  A )  .N  ( 1st `  B ) )  e.  N.  /\  (
( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )  /\  (
( 1st `  C
)  e.  N.  /\  ( 2nd `  C )  e.  N. ) )  ->  ( <. (
( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.  .pQ  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )  =  <. ( ( ( 1st `  A )  .N  ( 1st `  B
) )  .N  ( 1st `  C ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  B
) )  .N  ( 2nd `  C ) )
>. )
3321, 27, 29, 31, 32syl22anc 1183 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( <. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.  .pQ  <. ( 1st `  C
) ,  ( 2nd `  C ) >. )  =  <. ( ( ( 1st `  A )  .N  ( 1st `  B
) )  .N  ( 1st `  C ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  B
) )  .N  ( 2nd `  C ) )
>. )
3415, 33eqtrd 2328 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .pQ  B
)  .pQ  C )  =  <. ( ( ( 1st `  A )  .N  ( 1st `  B
) )  .N  ( 1st `  C ) ) ,  ( ( ( 2nd `  A )  .N  ( 2nd `  B
) )  .N  ( 2nd `  C ) )
>. )
35 1st2nd 6182 . . . . . . . . 9  |-  ( ( Rel  ( N.  X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
3610, 5, 35sylancr 644 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
37 mulpipq2 8579 . . . . . . . . 9  |-  ( ( B  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( B  .pQ  C )  = 
<. ( ( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)
387, 12, 37syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( B  .pQ  C )  = 
<. ( ( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)
3936, 38oveq12d 5892 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  ( B  .pQ  C ) )  =  (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. (
( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
) )
40 mulclpi 8533 . . . . . . . . 9  |-  ( ( ( 1st `  B
)  e.  N.  /\  ( 1st `  C )  e.  N. )  -> 
( ( 1st `  B
)  .N  ( 1st `  C ) )  e. 
N. )
4119, 29, 40syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  B
)  .N  ( 1st `  C ) )  e. 
N. )
42 mulclpi 8533 . . . . . . . . 9  |-  ( ( ( 2nd `  B
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
4325, 31, 42syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
44 mulpipq 8580 . . . . . . . 8  |-  ( ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  /\  ( ( ( 1st `  B )  .N  ( 1st `  C ) )  e.  N.  /\  (
( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. ) )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. (
( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)  =  <. (
( 1st `  A
)  .N  ( ( 1st `  B )  .N  ( 1st `  C
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
)
4517, 23, 41, 43, 44syl22anc 1183 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. (
( 1st `  B
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  B
)  .N  ( 2nd `  C ) ) >.
)  =  <. (
( 1st `  A
)  .N  ( ( 1st `  B )  .N  ( 1st `  C
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
)
4639, 45eqtrd 2328 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  ( B  .pQ  C ) )  =  <. ( ( 1st `  A
)  .N  ( ( 1st `  B )  .N  ( 1st `  C
) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) >.
)
473, 34, 463eqtr4a 2354 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .pQ  B
)  .pQ  C )  =  ( A  .pQ  ( B  .pQ  C ) ) )
4847fveq2d 5545 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( /Q `  ( ( A 
.pQ  B )  .pQ  C ) )  =  ( /Q `  ( A 
.pQ  ( B  .pQ  C ) ) ) )
49 mulerpq 8597 . . . 4  |-  ( ( /Q `  ( A 
.pQ  B ) )  .Q  ( /Q `  C ) )  =  ( /Q `  (
( A  .pQ  B
)  .pQ  C )
)
50 mulerpq 8597 . . . 4  |-  ( ( /Q `  A )  .Q  ( /Q `  ( B  .pQ  C ) ) )  =  ( /Q `  ( A 
.pQ  ( B  .pQ  C ) ) )
5148, 49, 503eqtr4g 2353 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( /Q `  ( A  .pQ  B ) )  .Q  ( /Q `  C ) )  =  ( ( /Q `  A )  .Q  ( /Q `  ( B  .pQ  C ) ) ) )
52 mulpqnq 8581 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( /Q
`  ( A  .pQ  B ) ) )
53523adant3 975 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  B )  =  ( /Q `  ( A  .pQ  B ) ) )
54 nqerid 8573 . . . . . 6  |-  ( C  e.  Q.  ->  ( /Q `  C )  =  C )
5554eqcomd 2301 . . . . 5  |-  ( C  e.  Q.  ->  C  =  ( /Q `  C ) )
56553ad2ant3 978 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  =  ( /Q `  C ) )
5753, 56oveq12d 5892 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .Q  B
)  .Q  C )  =  ( ( /Q
`  ( A  .pQ  B ) )  .Q  ( /Q `  C ) ) )
58 nqerid 8573 . . . . . 6  |-  ( A  e.  Q.  ->  ( /Q `  A )  =  A )
5958eqcomd 2301 . . . . 5  |-  ( A  e.  Q.  ->  A  =  ( /Q `  A ) )
60593ad2ant1 976 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  =  ( /Q `  A ) )
61 mulpqnq 8581 . . . . 5  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( B  .Q  C
)  =  ( /Q
`  ( B  .pQ  C ) ) )
62613adant1 973 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( B  .Q  C )  =  ( /Q `  ( B  .pQ  C ) ) )
6360, 62oveq12d 5892 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  ( B  .Q  C ) )  =  ( ( /Q `  A )  .Q  ( /Q `  ( B  .pQ  C ) ) ) )
6451, 57, 633eqtr4d 2338 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .Q  B
)  .Q  C )  =  ( A  .Q  ( B  .Q  C
) ) )
65 mulnqf 8589 . . . 4  |-  .Q  :
( Q.  X.  Q. )
--> Q.
6665fdmi 5410 . . 3  |-  dom  .Q  =  ( Q.  X.  Q. )
67 0nnq 8564 . . 3  |-  -.  (/)  e.  Q.
6866, 67ndmovass 6024 . 2  |-  ( -.  ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( ( A  .Q  B )  .Q  C
)  =  ( A  .Q  ( B  .Q  C ) ) )
6964, 68pm2.61i 156 1  |-  ( ( A  .Q  B )  .Q  C )  =  ( A  .Q  ( B  .Q  C ) )
Colors of variables: wff set class
Syntax hints:    /\ w3a 934    = wceq 1632    e. wcel 1696   <.cop 3656    X. cxp 4703   Rel wrel 4710   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137   N.cnpi 8482    .N cmi 8484    .pQ cmpq 8487   Q.cnq 8490   /Qcerq 8492    .Q cmq 8494
This theorem is referenced by:  recmulnq  8604  halfnq  8616  ltrnq  8619  addclprlem2  8657  mulclprlem  8659  mulasspr  8664  1idpr  8669  prlem934  8673  prlem936  8687  reclem3pr  8689
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-mi 8514  df-lti 8515  df-mpq 8549  df-enq 8551  df-nq 8552  df-erq 8553  df-mq 8555  df-1nq 8556
  Copyright terms: Public domain W3C validator