MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasspr Unicode version

Theorem mulasspr 8644
Description: Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by NM, 18-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulasspr  |-  ( ( A  .P.  B )  .P.  C )  =  ( A  .P.  ( B  .P.  C ) )

Proof of Theorem mulasspr
Dummy variables  f 
g  h  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mp 8604 . 2  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  .Q  z ) } )
2 mulclnq 8567 . 2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
3 dmmp 8633 . 2  |-  dom  .P.  =  ( P.  X.  P. )
4 mulclpr 8640 . 2  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  .P.  g
)  e.  P. )
5 mulassnq 8579 . 2  |-  ( ( f  .Q  g )  .Q  h )  =  ( f  .Q  (
g  .Q  h ) )
61, 2, 3, 4, 5genpass 8629 1  |-  ( ( A  .P.  B )  .P.  C )  =  ( A  .P.  ( B  .P.  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1623  (class class class)co 5820    .Q cmq 8474    .P. cmp 8480
This theorem is referenced by:  mulasssr  8708
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-omul 6480  df-er 6656  df-ni 8492  df-mi 8494  df-lti 8495  df-mpq 8529  df-ltpq 8530  df-enq 8531  df-nq 8532  df-erq 8533  df-mq 8535  df-1nq 8536  df-rq 8537  df-ltnq 8538  df-np 8601  df-mp 8604
  Copyright terms: Public domain W3C validator