MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulasspr Unicode version

Theorem mulasspr 8834
Description: Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by NM, 18-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulasspr  |-  ( ( A  .P.  B )  .P.  C )  =  ( A  .P.  ( B  .P.  C ) )

Proof of Theorem mulasspr
Dummy variables  f 
g  h  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mp 8794 . 2  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  .Q  z ) } )
2 mulclnq 8757 . 2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
3 dmmp 8823 . 2  |-  dom  .P.  =  ( P.  X.  P. )
4 mulclpr 8830 . 2  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  .P.  g
)  e.  P. )
5 mulassnq 8769 . 2  |-  ( ( f  .Q  g )  .Q  h )  =  ( f  .Q  (
g  .Q  h ) )
61, 2, 3, 4, 5genpass 8819 1  |-  ( ( A  .P.  B )  .P.  C )  =  ( A  .P.  ( B  .P.  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1649  (class class class)co 6020    .Q cmq 8664    .P. cmp 8670
This theorem is referenced by:  mulasssr  8898
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-omul 6665  df-er 6841  df-ni 8682  df-mi 8684  df-lti 8685  df-mpq 8719  df-ltpq 8720  df-enq 8721  df-nq 8722  df-erq 8723  df-mq 8725  df-1nq 8726  df-rq 8727  df-ltnq 8728  df-np 8791  df-mp 8794
  Copyright terms: Public domain W3C validator