MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcanpi Unicode version

Theorem mulcanpi 8457
Description: Multiplication cancellation law for positive integers. (Contributed by NM, 4-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcanpi  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C )  <-> 
B  =  C ) )

Proof of Theorem mulcanpi
StepHypRef Expression
1 mulclpi 8450 . . . . . . . . . 10  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  e.  N. )
2 eleq1 2316 . . . . . . . . . 10  |-  ( ( A  .N  B )  =  ( A  .N  C )  ->  (
( A  .N  B
)  e.  N.  <->  ( A  .N  C )  e.  N. ) )
31, 2syl5ib 212 . . . . . . . . 9  |-  ( ( A  .N  B )  =  ( A  .N  C )  ->  (
( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  C
)  e.  N. )
)
43imp 420 . . . . . . . 8  |-  ( ( ( A  .N  B
)  =  ( A  .N  C )  /\  ( A  e.  N.  /\  B  e.  N. )
)  ->  ( A  .N  C )  e.  N. )
5 dmmulpi 8448 . . . . . . . . 9  |-  dom  .N  =  ( N.  X.  N. )
6 0npi 8439 . . . . . . . . 9  |-  -.  (/)  e.  N.
75, 6ndmovrcl 5905 . . . . . . . 8  |-  ( ( A  .N  C )  e.  N.  ->  ( A  e.  N.  /\  C  e.  N. ) )
8 simpr 449 . . . . . . . 8  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  C  e.  N. )
94, 7, 83syl 20 . . . . . . 7  |-  ( ( ( A  .N  B
)  =  ( A  .N  C )  /\  ( A  e.  N.  /\  B  e.  N. )
)  ->  C  e.  N. )
10 mulpiord 8442 . . . . . . . . . 10  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
1110adantr 453 . . . . . . . . 9  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  .N  B )  =  ( A  .o  B ) )
12 mulpiord 8442 . . . . . . . . . 10  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  =  ( A  .o  C ) )
1312adantlr 698 . . . . . . . . 9  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( A  .N  C )  =  ( A  .o  C ) )
1411, 13eqeq12d 2270 . . . . . . . 8  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C
)  <->  ( A  .o  B )  =  ( A  .o  C ) ) )
15 pinn 8435 . . . . . . . . . . . . 13  |-  ( A  e.  N.  ->  A  e.  om )
16 pinn 8435 . . . . . . . . . . . . 13  |-  ( B  e.  N.  ->  B  e.  om )
17 pinn 8435 . . . . . . . . . . . . 13  |-  ( C  e.  N.  ->  C  e.  om )
18 elni2 8434 . . . . . . . . . . . . . . . 16  |-  ( A  e.  N.  <->  ( A  e.  om  /\  (/)  e.  A
) )
1918simprbi 452 . . . . . . . . . . . . . . 15  |-  ( A  e.  N.  ->  (/)  e.  A
)
20 nnmcan 6565 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )
2120biimpd 200 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
2219, 21sylan2 462 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  A  e.  N. )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
2322ex 425 . . . . . . . . . . . . 13  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) )
2415, 16, 17, 23syl3an 1229 . . . . . . . . . . . 12  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) )
25243exp 1155 . . . . . . . . . . 11  |-  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( A  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) ) )
2625com4r 82 . . . . . . . . . 10  |-  ( A  e.  N.  ->  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) ) )
2726pm2.43i 45 . . . . . . . . 9  |-  ( A  e.  N.  ->  ( B  e.  N.  ->  ( C  e.  N.  ->  ( ( A  .o  B
)  =  ( A  .o  C )  ->  B  =  C )
) ) )
2827imp31 423 . . . . . . . 8  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
2914, 28sylbid 208 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  C  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C
)  ->  B  =  C ) )
309, 29sylan2 462 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( ( A  .N  B )  =  ( A  .N  C )  /\  ( A  e. 
N.  /\  B  e.  N. ) ) )  -> 
( ( A  .N  B )  =  ( A  .N  C )  ->  B  =  C ) )
3130exp32 591 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C )  ->  ( ( A  e.  N.  /\  B  e.  N. )  ->  (
( A  .N  B
)  =  ( A  .N  C )  ->  B  =  C )
) ) )
3231imp4b 576 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  .N  B
)  =  ( A  .N  C ) )  ->  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  .N  B
)  =  ( A  .N  C ) )  ->  B  =  C ) )
3332pm2.43i 45 . . 3  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  .N  B
)  =  ( A  .N  C ) )  ->  B  =  C )
3433ex 425 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C )  ->  B  =  C ) )
35 oveq2 5765 . 2  |-  ( B  =  C  ->  ( A  .N  B )  =  ( A  .N  C
) )
3634, 35impbid1 196 1  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  .N  B )  =  ( A  .N  C )  <-> 
B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   (/)c0 3397   omcom 4593  (class class class)co 5757    .o comu 6410   N.cnpi 8399    .N cmi 8401
This theorem is referenced by:  enqer  8478  nqereu  8486  adderpqlem  8511  mulerpqlem  8512
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-recs 6321  df-rdg 6356  df-oadd 6416  df-omul 6417  df-ni 8429  df-mi 8431
  Copyright terms: Public domain W3C validator