MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclprlem Unicode version

Theorem mulclprlem 8688
Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 14-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclprlem  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  ->  x  e.  ( A  .P.  B ) ) )
Distinct variable groups:    x, g, h    x, A    x, B
Allowed substitution hints:    A( g, h)    B( g, h)

Proof of Theorem mulclprlem
Dummy variables  y 
z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 8660 . . . . . 6  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  g  e.  Q. )
2 elprnq 8660 . . . . . 6  |-  ( ( B  e.  P.  /\  h  e.  B )  ->  h  e.  Q. )
3 recclnq 8635 . . . . . . . . 9  |-  ( h  e.  Q.  ->  ( *Q `  h )  e. 
Q. )
43adantl 452 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( *Q `  h
)  e.  Q. )
5 vex 2825 . . . . . . . . 9  |-  x  e. 
_V
6 ovex 5925 . . . . . . . . 9  |-  ( g  .Q  h )  e. 
_V
7 ltmnq 8641 . . . . . . . . 9  |-  ( w  e.  Q.  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
8 fvex 5577 . . . . . . . . 9  |-  ( *Q
`  h )  e. 
_V
9 mulcomnq 8622 . . . . . . . . 9  |-  ( y  .Q  z )  =  ( z  .Q  y
)
105, 6, 7, 8, 9caovord2 6074 . . . . . . . 8  |-  ( ( *Q `  h )  e.  Q.  ->  (
x  <Q  ( g  .Q  h )  <->  ( x  .Q  ( *Q `  h
) )  <Q  (
( g  .Q  h
)  .Q  ( *Q
`  h ) ) ) )
114, 10syl 15 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  <-> 
( x  .Q  ( *Q `  h ) ) 
<Q  ( ( g  .Q  h )  .Q  ( *Q `  h ) ) ) )
12 mulassnq 8628 . . . . . . . . . 10  |-  ( ( g  .Q  h )  .Q  ( *Q `  h ) )  =  ( g  .Q  (
h  .Q  ( *Q
`  h ) ) )
13 recidnq 8634 . . . . . . . . . . 11  |-  ( h  e.  Q.  ->  (
h  .Q  ( *Q
`  h ) )  =  1Q )
1413oveq2d 5916 . . . . . . . . . 10  |-  ( h  e.  Q.  ->  (
g  .Q  ( h  .Q  ( *Q `  h ) ) )  =  ( g  .Q  1Q ) )
1512, 14syl5eq 2360 . . . . . . . . 9  |-  ( h  e.  Q.  ->  (
( g  .Q  h
)  .Q  ( *Q
`  h ) )  =  ( g  .Q  1Q ) )
16 mulidnq 8632 . . . . . . . . 9  |-  ( g  e.  Q.  ->  (
g  .Q  1Q )  =  g )
1715, 16sylan9eqr 2370 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( ( g  .Q  h )  .Q  ( *Q `  h ) )  =  g )
1817breq2d 4072 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( ( x  .Q  ( *Q `  h ) )  <Q  ( (
g  .Q  h )  .Q  ( *Q `  h ) )  <->  ( x  .Q  ( *Q `  h
) )  <Q  g
) )
1911, 18bitrd 244 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  <-> 
( x  .Q  ( *Q `  h ) ) 
<Q  g ) )
201, 2, 19syl2an 463 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( x  <Q  (
g  .Q  h )  <-> 
( x  .Q  ( *Q `  h ) ) 
<Q  g ) )
21 prcdnq 8662 . . . . . 6  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  ( ( x  .Q  ( *Q `  h ) )  <Q  g  ->  ( x  .Q  ( *Q
`  h ) )  e.  A ) )
2221adantr 451 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( ( x  .Q  ( *Q `  h ) )  <Q  g  ->  ( x  .Q  ( *Q
`  h ) )  e.  A ) )
2320, 22sylbid 206 . . . 4  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( x  <Q  (
g  .Q  h )  ->  ( x  .Q  ( *Q `  h ) )  e.  A ) )
24 df-mp 8653 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  .Q  z ) } )
25 mulclnq 8616 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
2624, 25genpprecl 8670 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( x  .Q  ( *Q `  h ) )  e.  A  /\  h  e.  B )  ->  (
( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B
) ) )
2726exp4b 590 . . . . . . 7  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( ( x  .Q  ( *Q `  h ) )  e.  A  ->  (
h  e.  B  -> 
( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) ) ) )
2827com34 77 . . . . . 6  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( h  e.  B  -> 
( ( x  .Q  ( *Q `  h ) )  e.  A  -> 
( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) ) ) )
2928imp32 422 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  h  e.  B ) )  ->  ( (
x  .Q  ( *Q
`  h ) )  e.  A  ->  (
( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B
) ) )
3029adantlr 695 . . . 4  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( ( x  .Q  ( *Q `  h ) )  e.  A  -> 
( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) )
3123, 30syld 40 . . 3  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( x  <Q  (
g  .Q  h )  ->  ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) )
3231adantr 451 . 2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  ->  ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) )
332adantl 452 . . 3  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  ->  h  e.  Q. )
34 mulassnq 8628 . . . . . 6  |-  ( ( x  .Q  ( *Q
`  h ) )  .Q  h )  =  ( x  .Q  (
( *Q `  h
)  .Q  h ) )
35 mulcomnq 8622 . . . . . . . 8  |-  ( ( *Q `  h )  .Q  h )  =  ( h  .Q  ( *Q `  h ) )
3635, 13syl5eq 2360 . . . . . . 7  |-  ( h  e.  Q.  ->  (
( *Q `  h
)  .Q  h )  =  1Q )
3736oveq2d 5916 . . . . . 6  |-  ( h  e.  Q.  ->  (
x  .Q  ( ( *Q `  h )  .Q  h ) )  =  ( x  .Q  1Q ) )
3834, 37syl5eq 2360 . . . . 5  |-  ( h  e.  Q.  ->  (
( x  .Q  ( *Q `  h ) )  .Q  h )  =  ( x  .Q  1Q ) )
39 mulidnq 8632 . . . . 5  |-  ( x  e.  Q.  ->  (
x  .Q  1Q )  =  x )
4038, 39sylan9eq 2368 . . . 4  |-  ( ( h  e.  Q.  /\  x  e.  Q. )  ->  ( ( x  .Q  ( *Q `  h ) )  .Q  h )  =  x )
4140eleq1d 2382 . . 3  |-  ( ( h  e.  Q.  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B )  <-> 
x  e.  ( A  .P.  B ) ) )
4233, 41sylan 457 . 2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B )  <-> 
x  e.  ( A  .P.  B ) ) )
4332, 42sylibd 205 1  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  ->  x  e.  ( A  .P.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1701   class class class wbr 4060   ` cfv 5292  (class class class)co 5900   Q.cnq 8519   1Qc1q 8520    .Q cmq 8523   *Qcrq 8524    <Q cltq 8525   P.cnp 8526    .P. cmp 8529
This theorem is referenced by:  mulclpr  8689
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-inf2 7387
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-omul 6526  df-er 6702  df-ni 8541  df-mi 8543  df-lti 8544  df-mpq 8578  df-ltpq 8579  df-enq 8580  df-nq 8581  df-erq 8582  df-mq 8584  df-1nq 8585  df-rq 8586  df-ltnq 8587  df-np 8650  df-mp 8653
  Copyright terms: Public domain W3C validator