MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclprlem Unicode version

Theorem mulclprlem 8523
Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 14-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclprlem  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  ->  x  e.  ( A  .P.  B ) ) )
Distinct variable groups:    x, g, h    x, A    x, B
Allowed substitution hints:    A( g, h)    B( g, h)

Proof of Theorem mulclprlem
StepHypRef Expression
1 elprnq 8495 . . . . . 6  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  g  e.  Q. )
2 elprnq 8495 . . . . . 6  |-  ( ( B  e.  P.  /\  h  e.  B )  ->  h  e.  Q. )
3 recclnq 8470 . . . . . . . . 9  |-  ( h  e.  Q.  ->  ( *Q `  h )  e. 
Q. )
43adantl 454 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( *Q `  h
)  e.  Q. )
5 vex 2730 . . . . . . . . 9  |-  x  e. 
_V
6 ovex 5735 . . . . . . . . 9  |-  ( g  .Q  h )  e. 
_V
7 ltmnq 8476 . . . . . . . . 9  |-  ( w  e.  Q.  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
8 fvex 5391 . . . . . . . . 9  |-  ( *Q
`  h )  e. 
_V
9 mulcomnq 8457 . . . . . . . . 9  |-  ( y  .Q  z )  =  ( z  .Q  y
)
105, 6, 7, 8, 9caovord2 5884 . . . . . . . 8  |-  ( ( *Q `  h )  e.  Q.  ->  (
x  <Q  ( g  .Q  h )  <->  ( x  .Q  ( *Q `  h
) )  <Q  (
( g  .Q  h
)  .Q  ( *Q
`  h ) ) ) )
114, 10syl 17 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  <-> 
( x  .Q  ( *Q `  h ) ) 
<Q  ( ( g  .Q  h )  .Q  ( *Q `  h ) ) ) )
12 mulassnq 8463 . . . . . . . . . 10  |-  ( ( g  .Q  h )  .Q  ( *Q `  h ) )  =  ( g  .Q  (
h  .Q  ( *Q
`  h ) ) )
13 recidnq 8469 . . . . . . . . . . 11  |-  ( h  e.  Q.  ->  (
h  .Q  ( *Q
`  h ) )  =  1Q )
1413oveq2d 5726 . . . . . . . . . 10  |-  ( h  e.  Q.  ->  (
g  .Q  ( h  .Q  ( *Q `  h ) ) )  =  ( g  .Q  1Q ) )
1512, 14syl5eq 2297 . . . . . . . . 9  |-  ( h  e.  Q.  ->  (
( g  .Q  h
)  .Q  ( *Q
`  h ) )  =  ( g  .Q  1Q ) )
16 mulidnq 8467 . . . . . . . . 9  |-  ( g  e.  Q.  ->  (
g  .Q  1Q )  =  g )
1715, 16sylan9eqr 2307 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( ( g  .Q  h )  .Q  ( *Q `  h ) )  =  g )
1817breq2d 3932 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( ( x  .Q  ( *Q `  h ) )  <Q  ( (
g  .Q  h )  .Q  ( *Q `  h ) )  <->  ( x  .Q  ( *Q `  h
) )  <Q  g
) )
1911, 18bitrd 246 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  <-> 
( x  .Q  ( *Q `  h ) ) 
<Q  g ) )
201, 2, 19syl2an 465 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( x  <Q  (
g  .Q  h )  <-> 
( x  .Q  ( *Q `  h ) ) 
<Q  g ) )
21 prcdnq 8497 . . . . . 6  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  ( ( x  .Q  ( *Q `  h ) )  <Q  g  ->  ( x  .Q  ( *Q
`  h ) )  e.  A ) )
2221adantr 453 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( ( x  .Q  ( *Q `  h ) )  <Q  g  ->  ( x  .Q  ( *Q
`  h ) )  e.  A ) )
2320, 22sylbid 208 . . . 4  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( x  <Q  (
g  .Q  h )  ->  ( x  .Q  ( *Q `  h ) )  e.  A ) )
24 df-mp 8488 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y  .Q  z ) } )
25 mulclnq 8451 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
2624, 25genpprecl 8505 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( x  .Q  ( *Q `  h ) )  e.  A  /\  h  e.  B )  ->  (
( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B
) ) )
2726exp4b 593 . . . . . . 7  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( ( x  .Q  ( *Q `  h ) )  e.  A  ->  (
h  e.  B  -> 
( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) ) ) )
2827com34 79 . . . . . 6  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( h  e.  B  -> 
( ( x  .Q  ( *Q `  h ) )  e.  A  -> 
( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) ) ) )
2928imp32 424 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  h  e.  B ) )  ->  ( (
x  .Q  ( *Q
`  h ) )  e.  A  ->  (
( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B
) ) )
3029adantlr 698 . . . 4  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( ( x  .Q  ( *Q `  h ) )  e.  A  -> 
( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) )
3123, 30syld 42 . . 3  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( x  <Q  (
g  .Q  h )  ->  ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) )
3231adantr 453 . 2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  ->  ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B ) ) )
332adantl 454 . . 3  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  ->  h  e.  Q. )
34 mulassnq 8463 . . . . . 6  |-  ( ( x  .Q  ( *Q
`  h ) )  .Q  h )  =  ( x  .Q  (
( *Q `  h
)  .Q  h ) )
35 mulcomnq 8457 . . . . . . . 8  |-  ( ( *Q `  h )  .Q  h )  =  ( h  .Q  ( *Q `  h ) )
3635, 13syl5eq 2297 . . . . . . 7  |-  ( h  e.  Q.  ->  (
( *Q `  h
)  .Q  h )  =  1Q )
3736oveq2d 5726 . . . . . 6  |-  ( h  e.  Q.  ->  (
x  .Q  ( ( *Q `  h )  .Q  h ) )  =  ( x  .Q  1Q ) )
3834, 37syl5eq 2297 . . . . 5  |-  ( h  e.  Q.  ->  (
( x  .Q  ( *Q `  h ) )  .Q  h )  =  ( x  .Q  1Q ) )
39 mulidnq 8467 . . . . 5  |-  ( x  e.  Q.  ->  (
x  .Q  1Q )  =  x )
4038, 39sylan9eq 2305 . . . 4  |-  ( ( h  e.  Q.  /\  x  e.  Q. )  ->  ( ( x  .Q  ( *Q `  h ) )  .Q  h )  =  x )
4140eleq1d 2319 . . 3  |-  ( ( h  e.  Q.  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B )  <-> 
x  e.  ( A  .P.  B ) ) )
4233, 41sylan 459 . 2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q `  h ) )  .Q  h )  e.  ( A  .P.  B )  <-> 
x  e.  ( A  .P.  B ) ) )
4332, 42sylibd 207 1  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g  .Q  h )  ->  x  e.  ( A  .P.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Q.cnq 8354   1Qc1q 8355    .Q cmq 8358   *Qcrq 8359    <Q cltq 8360   P.cnp 8361    .P. cmp 8364
This theorem is referenced by:  mulclpr  8524
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-omul 6370  df-er 6546  df-ni 8376  df-mi 8378  df-lti 8379  df-mpq 8413  df-ltpq 8414  df-enq 8415  df-nq 8416  df-erq 8417  df-mq 8419  df-1nq 8420  df-rq 8421  df-ltnq 8422  df-np 8485  df-mp 8488
  Copyright terms: Public domain W3C validator