MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcn2 Unicode version

Theorem mulcn2 12069
Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
mulcn2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
Distinct variable groups:    v, u, y, z, A    u, B, v, y, z    u, C, v, y, z

Proof of Theorem mulcn2
StepHypRef Expression
1 rphalfcl 10378 . . . 4  |-  ( A  e.  RR+  ->  ( A  /  2 )  e.  RR+ )
213ad2ant1 976 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  /  2 )  e.  RR+ )
3 abscl 11763 . . . . . 6  |-  ( C  e.  CC  ->  ( abs `  C )  e.  RR )
433ad2ant3 978 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( abs `  C )  e.  RR )
5 abscl 11763 . . . . . . . . . 10  |-  ( B  e.  CC  ->  ( abs `  B )  e.  RR )
653ad2ant2 977 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( abs `  B )  e.  RR )
7 1re 8837 . . . . . . . . 9  |-  1  e.  RR
8 readdcl 8820 . . . . . . . . 9  |-  ( ( ( abs `  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  B
)  +  1 )  e.  RR )
96, 7, 8sylancl 643 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  B
)  +  1 )  e.  RR )
10 absge0 11772 . . . . . . . . . 10  |-  ( B  e.  CC  ->  0  <_  ( abs `  B
) )
11 0lt1 9296 . . . . . . . . . . 11  |-  0  <  1
12 addgegt0 9261 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  B
)  e.  RR  /\  1  e.  RR )  /\  ( 0  <_  ( abs `  B )  /\  0  <  1 ) )  ->  0  <  (
( abs `  B
)  +  1 ) )
1312an4s 799 . . . . . . . . . . 11  |-  ( ( ( ( abs `  B
)  e.  RR  /\  0  <_  ( abs `  B
) )  /\  (
1  e.  RR  /\  0  <  1 ) )  ->  0  <  (
( abs `  B
)  +  1 ) )
147, 11, 13mpanr12 666 . . . . . . . . . 10  |-  ( ( ( abs `  B
)  e.  RR  /\  0  <_  ( abs `  B
) )  ->  0  <  ( ( abs `  B
)  +  1 ) )
155, 10, 14syl2anc 642 . . . . . . . . 9  |-  ( B  e.  CC  ->  0  <  ( ( abs `  B
)  +  1 ) )
16153ad2ant2 977 . . . . . . . 8  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  0  <  ( ( abs `  B
)  +  1 ) )
179, 16elrpd 10388 . . . . . . 7  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  B
)  +  1 )  e.  RR+ )
182, 17rpdivcld 10407 . . . . . 6  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+ )
1918rpred 10390 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR )
204, 19readdcld 8862 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR )
21 absge0 11772 . . . . . 6  |-  ( C  e.  CC  ->  0  <_  ( abs `  C
) )
22213ad2ant3 978 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  0  <_  ( abs `  C
) )
23 elrp 10356 . . . . . 6  |-  ( ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+  <->  ( ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) )  e.  RR  /\  0  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
24 addgegt0 9261 . . . . . . 7  |-  ( ( ( ( abs `  C
)  e.  RR  /\  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  e.  RR )  /\  ( 0  <_ 
( abs `  C
)  /\  0  <  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  ->  0  <  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
2524an4s 799 . . . . . 6  |-  ( ( ( ( abs `  C
)  e.  RR  /\  0  <_  ( abs `  C
) )  /\  (
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  e.  RR  /\  0  <  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  -> 
0  <  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) ) )
2623, 25sylan2b 461 . . . . 5  |-  ( ( ( ( abs `  C
)  e.  RR  /\  0  <_  ( abs `  C
) )  /\  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+ )  ->  0  <  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
274, 22, 18, 26syl21anc 1181 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  0  <  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
2820, 27elrpd 10388 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR+ )
292, 28rpdivcld 10407 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  /  2
)  /  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  e.  RR+ )
30 simprl 732 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  u  e.  CC )
31 simpl2 959 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  B  e.  CC )
3230, 31subcld 9157 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  -  B )  e.  CC )
3332abscld 11918 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( u  -  B
) )  e.  RR )
342adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( A  /  2 )  e.  RR+ )
3534rpred 10390 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( A  /  2 )  e.  RR )
3628adantr 451 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  e.  RR+ )
3733, 35, 36ltmuldivd 10433 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
)  <->  ( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) ) ) )
38 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  v  e.  CC )
39 simpl3 960 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  C  e.  CC )
4038, 39abs2difd 11939 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <_  ( abs `  ( v  -  C
) ) )
4138abscld 11918 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  v )  e.  RR )
424adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  C )  e.  RR )
4341, 42resubcld 9211 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  e.  RR )
4438, 39subcld 9157 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( v  -  C )  e.  CC )
4544abscld 11918 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( v  -  C
) )  e.  RR )
4619adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  e.  RR )
47 lelttr 8912 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs `  v
)  -  ( abs `  C ) )  e.  RR  /\  ( abs `  ( v  -  C
) )  e.  RR  /\  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  e.  RR )  ->  ( ( ( ( abs `  v
)  -  ( abs `  C ) )  <_ 
( abs `  (
v  -  C ) )  /\  ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
4843, 45, 46, 47syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  v
)  -  ( abs `  C ) )  <_ 
( abs `  (
v  -  C ) )  /\  ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
4940, 48mpand 656 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( ( abs `  v )  -  ( abs `  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
5041, 42, 46ltsubadd2d 9370 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  v
)  -  ( abs `  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  <->  ( abs `  v
)  <  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) ) ) )
5149, 50sylibd 205 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( abs `  v )  <  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
5220adantr 451 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  e.  RR )
53 ltle 8910 . . . . . . . . . . . 12  |-  ( ( ( abs `  v
)  e.  RR  /\  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR )  ->  (
( abs `  v
)  <  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  v )  <_ 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
5441, 52, 53syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  < 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( abs `  v
)  <_  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) ) ) )
5551, 54syld 40 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( abs `  v )  <_  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
5632absge0d 11926 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  0  <_  ( abs `  ( u  -  B ) ) )
57 lemul2a 9611 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  v
)  e.  RR  /\  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR  /\  ( ( abs `  ( u  -  B ) )  e.  RR  /\  0  <_  ( abs `  (
u  -  B ) ) ) )  /\  ( abs `  v )  <_  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) ) )
5857ex 423 . . . . . . . . . . 11  |-  ( ( ( abs `  v
)  e.  RR  /\  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  e.  RR  /\  ( ( abs `  ( u  -  B ) )  e.  RR  /\  0  <_  ( abs `  (
u  -  B ) ) ) )  -> 
( ( abs `  v
)  <_  ( ( abs `  C )  +  ( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) ) ) )
5941, 52, 33, 56, 58syl112anc 1186 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  v )  <_ 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) ) ) )
6033, 41remulcld 8863 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  e.  RR )
6133, 52remulcld 8863 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  e.  RR )
62 lelttr 8912 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  e.  RR  /\  ( ( abs `  ( u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  e.  RR  /\  ( A  /  2
)  e.  RR )  ->  ( ( ( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  /\  ( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) )
6360, 61, 35, 62syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  /\  ( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) )
6463exp3a 425 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  <_ 
( ( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  -> 
( ( ( abs `  ( u  -  B
) )  x.  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  <  ( A  / 
2 )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) ) )
6555, 59, 643syld 51 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
)  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  <  ( A  /  2 ) ) ) )
6665com23 72 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  < 
( A  /  2
)  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  <  ( A  /  2 ) ) ) )
6737, 66sylbird 226 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  < 
( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  ->  ( ( abs `  ( u  -  B
) )  x.  ( abs `  v ) )  <  ( A  / 
2 ) ) ) )
6867imp3a 420 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
) ) )
6932, 38absmuld 11936 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( u  -  B )  x.  v
) )  =  ( ( abs `  (
u  -  B ) )  x.  ( abs `  v ) ) )
7030, 31, 38subdird 9236 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
u  -  B )  x.  v )  =  ( ( u  x.  v )  -  ( B  x.  v )
) )
7170fveq2d 5529 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( u  -  B )  x.  v
) )  =  ( abs `  ( ( u  x.  v )  -  ( B  x.  v ) ) ) )
7269, 71eqtr3d 2317 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( u  -  B ) )  x.  ( abs `  v
) )  =  ( abs `  ( ( u  x.  v )  -  ( B  x.  v ) ) ) )
7372breq1d 4033 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  x.  ( abs `  v ) )  < 
( A  /  2
)  <->  ( abs `  (
( u  x.  v
)  -  ( B  x.  v ) ) )  <  ( A  /  2 ) ) )
7468, 73sylibd 205 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  v
) ) )  < 
( A  /  2
) ) )
7517adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  +  1 )  e.  RR+ )
7645, 35, 75ltmuldiv2d 10434 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 )  <->  ( abs `  ( v  -  C
) )  <  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )
7731, 38, 39subdid 9235 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  x.  ( v  -  C
) )  =  ( ( B  x.  v
)  -  ( B  x.  C ) ) )
7877fveq2d 5529 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( B  x.  (
v  -  C ) ) )  =  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) ) )
7931, 44absmuld 11936 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( B  x.  (
v  -  C ) ) )  =  ( ( abs `  B
)  x.  ( abs `  ( v  -  C
) ) ) )
8078, 79eqtr3d 2317 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  =  ( ( abs `  B
)  x.  ( abs `  ( v  -  C
) ) ) )
8131abscld 11918 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  B )  e.  RR )
8281lep1d 9688 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  B )  <_  (
( abs `  B
)  +  1 ) )
839adantr 451 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  +  1 )  e.  RR )
84 abscl 11763 . . . . . . . . . . . . 13  |-  ( ( v  -  C )  e.  CC  ->  ( abs `  ( v  -  C ) )  e.  RR )
85 absge0 11772 . . . . . . . . . . . . 13  |-  ( ( v  -  C )  e.  CC  ->  0  <_  ( abs `  (
v  -  C ) ) )
8684, 85jca 518 . . . . . . . . . . . 12  |-  ( ( v  -  C )  e.  CC  ->  (
( abs `  (
v  -  C ) )  e.  RR  /\  0  <_  ( abs `  (
v  -  C ) ) ) )
87 lemul1a 9610 . . . . . . . . . . . . 13  |-  ( ( ( ( abs `  B
)  e.  RR  /\  ( ( abs `  B
)  +  1 )  e.  RR  /\  (
( abs `  (
v  -  C ) )  e.  RR  /\  0  <_  ( abs `  (
v  -  C ) ) ) )  /\  ( abs `  B )  <_  ( ( abs `  B )  +  1 ) )  ->  (
( abs `  B
)  x.  ( abs `  ( v  -  C
) ) )  <_ 
( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) ) )
8887ex 423 . . . . . . . . . . . 12  |-  ( ( ( abs `  B
)  e.  RR  /\  ( ( abs `  B
)  +  1 )  e.  RR  /\  (
( abs `  (
v  -  C ) )  e.  RR  /\  0  <_  ( abs `  (
v  -  C ) ) ) )  -> 
( ( abs `  B
)  <_  ( ( abs `  B )  +  1 )  ->  (
( abs `  B
)  x.  ( abs `  ( v  -  C
) ) )  <_ 
( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) ) ) )
8986, 88syl3an3 1217 . . . . . . . . . . 11  |-  ( ( ( abs `  B
)  e.  RR  /\  ( ( abs `  B
)  +  1 )  e.  RR  /\  (
v  -  C )  e.  CC )  -> 
( ( abs `  B
)  <_  ( ( abs `  B )  +  1 )  ->  (
( abs `  B
)  x.  ( abs `  ( v  -  C
) ) )  <_ 
( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) ) ) )
9081, 83, 44, 89syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  <_ 
( ( abs `  B
)  +  1 )  ->  ( ( abs `  B )  x.  ( abs `  ( v  -  C ) ) )  <_  ( ( ( abs `  B )  +  1 )  x.  ( abs `  (
v  -  C ) ) ) ) )
9182, 90mpd 14 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  B )  x.  ( abs `  (
v  -  C ) ) )  <_  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) ) )
9280, 91eqbrtrd 4043 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  <_  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) ) )
9331, 38mulcld 8855 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  x.  v )  e.  CC )
9431, 39mulcld 8855 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( B  x.  C )  e.  CC )
9593, 94subcld 9157 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( B  x.  v )  -  ( B  x.  C ) )  e.  CC )
9695abscld 11918 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  e.  RR )
9783, 45remulcld 8863 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  e.  RR )
98 lelttr 8912 . . . . . . . . 9  |-  ( ( ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  e.  RR  /\  ( ( ( abs `  B )  +  1 )  x.  ( abs `  ( v  -  C
) ) )  e.  RR  /\  ( A  /  2 )  e.  RR )  ->  (
( ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <_  ( (
( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  /\  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 ) )  ->  ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <  ( A  /  2 ) ) )
9996, 97, 35, 98syl3anc 1182 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <_  ( (
( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  /\  (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 ) )  ->  ( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <  ( A  /  2 ) ) )
10092, 99mpand 656 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( ( abs `  B
)  +  1 )  x.  ( abs `  (
v  -  C ) ) )  <  ( A  /  2 )  -> 
( abs `  (
( B  x.  v
)  -  ( B  x.  C ) ) )  <  ( A  /  2 ) ) )
10176, 100sylbird 226 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C )
) )  <  ( A  /  2 ) ) )
102101adantld 453 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( B  x.  v )  -  ( B  x.  C
) ) )  < 
( A  /  2
) ) )
10374, 102jcad 519 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  (
( abs `  (
( u  x.  v
)  -  ( B  x.  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) )  <  ( A  / 
2 ) ) ) )
104 mulcl 8821 . . . . . 6  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  x.  v
)  e.  CC )
105104adantl 452 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( u  x.  v )  e.  CC )
106 simpl1 958 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR+ )
107106rpred 10390 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  A  e.  RR )
108 abs3lem 11822 . . . . 5  |-  ( ( ( ( u  x.  v )  e.  CC  /\  ( B  x.  C
)  e.  CC )  /\  ( ( B  x.  v )  e.  CC  /\  A  e.  RR ) )  -> 
( ( ( abs `  ( ( u  x.  v )  -  ( B  x.  v )
) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
109105, 94, 93, 107, 108syl22anc 1183 . . . 4  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
( u  x.  v
)  -  ( B  x.  v ) ) )  <  ( A  /  2 )  /\  ( abs `  ( ( B  x.  v )  -  ( B  x.  C ) ) )  <  ( A  / 
2 ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
110103, 109syld 40 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A ) )
111110ralrimivva 2635 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
112 breq2 4027 . . . . . 6  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( abs `  ( u  -  B
) )  <  y  <->  ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) ) )
113112anbi1d 685 . . . . 5  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  <->  ( ( abs `  ( u  -  B ) )  < 
( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  z ) ) )
114113imbi1d 308 . . . 4  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( ( ( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A )  <-> 
( ( ( abs `  ( u  -  B
) )  <  (
( A  /  2
)  /  ( ( abs `  C )  +  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) ) )
1151142ralbidv 2585 . . 3  |-  ( y  =  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  ->  ( A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A )  <->  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  z )  ->  ( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) ) )
116 breq2 4027 . . . . . 6  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( ( abs `  ( v  -  C ) )  < 
z  <->  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )
117116anbi2d 684 . . . . 5  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
z )  <->  ( ( abs `  ( u  -  B ) )  < 
( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) ) )
118117imbi1d 308 . . . 4  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( (
( ( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A )  <->  ( (
( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A ) ) )
1191182ralbidv 2585 . . 3  |-  ( z  =  ( ( A  /  2 )  / 
( ( abs `  B
)  +  1 ) )  ->  ( A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  z )  ->  ( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A )  <->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  ( ( A  /  2 )  /  ( ( abs `  C )  +  ( ( A  /  2
)  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  ( v  -  C ) )  < 
( ( A  / 
2 )  /  (
( abs `  B
)  +  1 ) ) )  ->  ( abs `  ( ( u  x.  v )  -  ( B  x.  C
) ) )  < 
A ) ) )
120115, 119rspc2ev 2892 . 2  |-  ( ( ( ( A  / 
2 )  /  (
( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  e.  RR+  /\  (
( A  /  2
)  /  ( ( abs `  B )  +  1 ) )  e.  RR+  /\  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  ( ( A  /  2 )  / 
( ( abs `  C
)  +  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) ) )  /\  ( abs `  (
v  -  C ) )  <  ( ( A  /  2 )  /  ( ( abs `  B )  +  1 ) ) )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
12129, 18, 111, 120syl3anc 1182 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  x.  v
)  -  ( B  x.  C ) ) )  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   2c2 9795   RR+crp 10354   abscabs 11719
This theorem is referenced by:  climmul  12106  rlimmul  12118  mulcn  18371  mulc1cncf  18409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721
  Copyright terms: Public domain W3C validator