MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcxp Unicode version

Theorem mulcxp 20533
Description: Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
mulcxp  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) )

Proof of Theorem mulcxp
StepHypRef Expression
1 simp1l 981 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  A  e.  RR )
21recnd 9074 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  A  e.  CC )
32mul01d 9225 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  x.  0 )  =  0 )
43oveq1d 6059 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  0 )  ^ c  C )  =  ( 0  ^ c  C
) )
5 simp3 959 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  C  e.  CC )
62, 5mulcxplem 20532 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^ c  C )  =  ( ( A  ^ c  C )  x.  (
0  ^ c  C
) ) )
74, 6eqtrd 2440 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  0 )  ^ c  C )  =  ( ( A  ^ c  C )  x.  (
0  ^ c  C
) ) )
8 oveq2 6052 . . . . 5  |-  ( B  =  0  ->  ( A  x.  B )  =  ( A  x.  0 ) )
98oveq1d 6059 . . . 4  |-  ( B  =  0  ->  (
( A  x.  B
)  ^ c  C
)  =  ( ( A  x.  0 )  ^ c  C ) )
10 oveq1 6051 . . . . 5  |-  ( B  =  0  ->  ( B  ^ c  C )  =  ( 0  ^ c  C ) )
1110oveq2d 6060 . . . 4  |-  ( B  =  0  ->  (
( A  ^ c  C )  x.  ( B  ^ c  C ) )  =  ( ( A  ^ c  C
)  x.  ( 0  ^ c  C ) ) )
129, 11eqeq12d 2422 . . 3  |-  ( B  =  0  ->  (
( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) )  <->  ( ( A  x.  0 )  ^ c  C )  =  ( ( A  ^ c  C )  x.  (
0  ^ c  C
) ) ) )
137, 12syl5ibrcom 214 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( B  =  0  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) ) )
14 simp2l 983 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  B  e.  RR )
1514recnd 9074 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  B  e.  CC )
1615mul02d 9224 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  x.  B )  =  0 )
1716oveq1d 6059 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( 0  x.  B )  ^ c  C )  =  ( 0  ^ c  C
) )
1815, 5mulcxplem 20532 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^ c  C )  =  ( ( B  ^ c  C )  x.  (
0  ^ c  C
) ) )
19 cxpcl 20522 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  ^ c  C )  e.  CC )
2015, 5, 19syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( B  ^ c  C )  e.  CC )
21 0cn 9044 . . . . . . . . 9  |-  0  e.  CC
22 cxpcl 20522 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  C  e.  CC )  ->  ( 0  ^ c  C )  e.  CC )
2321, 5, 22sylancr 645 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^ c  C )  e.  CC )
2420, 23mulcomd 9069 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( B  ^ c  C )  x.  ( 0  ^ c  C ) )  =  ( ( 0  ^ c  C )  x.  ( B  ^ c  C ) ) )
2518, 24eqtrd 2440 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^ c  C )  =  ( ( 0  ^ c  C )  x.  ( B  ^ c  C ) ) )
2617, 25eqtrd 2440 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( 0  x.  B )  ^ c  C )  =  ( ( 0  ^ c  C )  x.  ( B  ^ c  C ) ) )
27 oveq1 6051 . . . . . . 7  |-  ( A  =  0  ->  ( A  x.  B )  =  ( 0  x.  B ) )
2827oveq1d 6059 . . . . . 6  |-  ( A  =  0  ->  (
( A  x.  B
)  ^ c  C
)  =  ( ( 0  x.  B )  ^ c  C ) )
29 oveq1 6051 . . . . . . 7  |-  ( A  =  0  ->  ( A  ^ c  C )  =  ( 0  ^ c  C ) )
3029oveq1d 6059 . . . . . 6  |-  ( A  =  0  ->  (
( A  ^ c  C )  x.  ( B  ^ c  C ) )  =  ( ( 0  ^ c  C
)  x.  ( B  ^ c  C ) ) )
3128, 30eqeq12d 2422 . . . . 5  |-  ( A  =  0  ->  (
( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) )  <->  ( ( 0  x.  B )  ^ c  C )  =  ( ( 0  ^ c  C )  x.  ( B  ^ c  C ) ) ) )
3226, 31syl5ibrcom 214 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  =  0  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) ) )
3332a1dd 44 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  =  0  ->  ( B  =/=  0  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) ) ) )
341adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  e.  RR )
35 simpl1r 1009 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <_  A )
36 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  =/=  0 )
3734, 35, 36ne0gt0d 9170 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <  A )
3834, 37elrpd 10606 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  e.  RR+ )
3914adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  e.  RR )
40 simpl2r 1011 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <_  B )
41 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  =/=  0 )
4239, 40, 41ne0gt0d 9170 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <  B )
4339, 42elrpd 10606 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  e.  RR+ )
4438, 43relogmuld 20477 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( log `  ( A  x.  B )
)  =  ( ( log `  A )  +  ( log `  B
) ) )
4544oveq2d 6060 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  ( A  x.  B ) ) )  =  ( C  x.  ( ( log `  A
)  +  ( log `  B ) ) ) )
465adantr 452 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  C  e.  CC )
472adantr 452 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  e.  CC )
4847, 36logcld 20425 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( log `  A
)  e.  CC )
4915adantr 452 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  e.  CC )
5049, 41logcld 20425 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( log `  B
)  e.  CC )
5146, 48, 50adddid 9072 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  (
( log `  A
)  +  ( log `  B ) ) )  =  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )
5245, 51eqtrd 2440 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  ( A  x.  B ) ) )  =  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )
5352fveq2d 5695 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( exp `  ( C  x.  ( log `  ( A  x.  B
) ) ) )  =  ( exp `  (
( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B ) ) ) ) )
5446, 48mulcld 9068 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  A ) )  e.  CC )
5546, 50mulcld 9068 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  B ) )  e.  CC )
56 efadd 12655 . . . . . . 7  |-  ( ( ( C  x.  ( log `  A ) )  e.  CC  /\  ( C  x.  ( log `  B ) )  e.  CC )  ->  ( exp `  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
5754, 55, 56syl2anc 643 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( exp `  (
( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A ) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
5853, 57eqtrd 2440 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( exp `  ( C  x.  ( log `  ( A  x.  B
) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A ) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
5947, 49mulcld 9068 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  e.  CC )
6047, 49, 36, 41mulne0d 9634 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  =/=  0 )
61 cxpef 20513 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  CC  /\  ( A  x.  B
)  =/=  0  /\  C  e.  CC )  ->  ( ( A  x.  B )  ^ c  C )  =  ( exp `  ( C  x.  ( log `  ( A  x.  B )
) ) ) )
6259, 60, 46, 61syl3anc 1184 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  ^ c  C )  =  ( exp `  ( C  x.  ( log `  ( A  x.  B )
) ) ) )
63 cxpef 20513 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  C  e.  CC )  ->  ( A  ^ c  C )  =  ( exp `  ( C  x.  ( log `  A ) ) ) )
6447, 36, 46, 63syl3anc 1184 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( A  ^ c  C )  =  ( exp `  ( C  x.  ( log `  A
) ) ) )
65 cxpef 20513 . . . . . . 7  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  C  e.  CC )  ->  ( B  ^ c  C )  =  ( exp `  ( C  x.  ( log `  B ) ) ) )
6649, 41, 46, 65syl3anc 1184 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( B  ^ c  C )  =  ( exp `  ( C  x.  ( log `  B
) ) ) )
6764, 66oveq12d 6062 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( ( A  ^ c  C )  x.  ( B  ^ c  C ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
6858, 62, 673eqtr4d 2450 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) )
6968exp32 589 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  =/=  0  ->  ( B  =/=  0  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) ) ) )
7033, 69pm2.61dne 2648 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( B  =/=  0  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) ) )
7113, 70pm2.61dne 2648 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   class class class wbr 4176   ` cfv 5417  (class class class)co 6044   CCcc 8948   RRcr 8949   0cc0 8950    + caddc 8953    x. cmul 8955    <_ cle 9081   expce 12623   logclog 20409    ^ c ccxp 20410
This theorem is referenced by:  cxprec  20534  divcxp  20535  mulcxpd  20576
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028  ax-addf 9029  ax-mulf 9030
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-of 6268  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-2o 6688  df-oadd 6691  df-er 6868  df-map 6983  df-pm 6984  df-ixp 7027  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-fi 7378  df-sup 7408  df-oi 7439  df-card 7786  df-cda 8008  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-5 10021  df-6 10022  df-7 10023  df-8 10024  df-9 10025  df-10 10026  df-n0 10182  df-z 10243  df-dec 10343  df-uz 10449  df-q 10535  df-rp 10573  df-xneg 10670  df-xadd 10671  df-xmul 10672  df-ioo 10880  df-ioc 10881  df-ico 10882  df-icc 10883  df-fz 11004  df-fzo 11095  df-fl 11161  df-mod 11210  df-seq 11283  df-exp 11342  df-fac 11526  df-bc 11553  df-hash 11578  df-shft 11841  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-limsup 12224  df-clim 12241  df-rlim 12242  df-sum 12439  df-ef 12629  df-sin 12631  df-cos 12632  df-pi 12634  df-struct 13430  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-ress 13435  df-plusg 13501  df-mulr 13502  df-starv 13503  df-sca 13504  df-vsca 13505  df-tset 13507  df-ple 13508  df-ds 13510  df-unif 13511  df-hom 13512  df-cco 13513  df-rest 13609  df-topn 13610  df-topgen 13626  df-pt 13627  df-prds 13630  df-xrs 13685  df-0g 13686  df-gsum 13687  df-qtop 13692  df-imas 13693  df-xps 13695  df-mre 13770  df-mrc 13771  df-acs 13773  df-mnd 14649  df-submnd 14698  df-mulg 14774  df-cntz 15075  df-cmn 15373  df-psmet 16653  df-xmet 16654  df-met 16655  df-bl 16656  df-mopn 16657  df-fbas 16658  df-fg 16659  df-cnfld 16663  df-top 16922  df-bases 16924  df-topon 16925  df-topsp 16926  df-cld 17042  df-ntr 17043  df-cls 17044  df-nei 17121  df-lp 17159  df-perf 17160  df-cn 17249  df-cnp 17250  df-haus 17337  df-tx 17551  df-hmeo 17744  df-fil 17835  df-fm 17927  df-flim 17928  df-flf 17929  df-xms 18307  df-ms 18308  df-tms 18309  df-cncf 18865  df-limc 19710  df-dv 19711  df-log 20411  df-cxp 20412
  Copyright terms: Public domain W3C validator