MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mule1 Unicode version

Theorem mule1 20388
Description: The Möbius function takes on values in magnitude at most 
1. (Together with mucl 20381, this implies that it takes a value in  { -u 1 ,  0 ,  1 } for every natural number.) (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
mule1  |-  ( A  e.  NN  ->  ( abs `  ( mmu `  A ) )  <_ 
1 )

Proof of Theorem mule1
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 muval 20372 . . . . 5  |-  ( A  e.  NN  ->  (
mmu `  A )  =  if ( E. p  e.  Prime  ( p ^
2 )  ||  A ,  0 ,  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) ) )
2 iftrue 3573 . . . . 5  |-  ( E. p  e.  Prime  (
p ^ 2 ) 
||  A  ->  if ( E. p  e.  Prime  ( p ^ 2 ) 
||  A ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  0 )
31, 2sylan9eq 2337 . . . 4  |-  ( ( A  e.  NN  /\  E. p  e.  Prime  (
p ^ 2 ) 
||  A )  -> 
( mmu `  A
)  =  0 )
43fveq2d 5531 . . 3  |-  ( ( A  e.  NN  /\  E. p  e.  Prime  (
p ^ 2 ) 
||  A )  -> 
( abs `  (
mmu `  A )
)  =  ( abs `  0 ) )
5 abs0 11772 . . . 4  |-  ( abs `  0 )  =  0
6 0le1 9299 . . . 4  |-  0  <_  1
75, 6eqbrtri 4044 . . 3  |-  ( abs `  0 )  <_ 
1
84, 7syl6eqbr 4062 . 2  |-  ( ( A  e.  NN  /\  E. p  e.  Prime  (
p ^ 2 ) 
||  A )  -> 
( abs `  (
mmu `  A )
)  <_  1 )
9 iffalse 3574 . . . . . 6  |-  ( -. 
E. p  e.  Prime  ( p ^ 2 ) 
||  A  ->  if ( E. p  e.  Prime  ( p ^ 2 ) 
||  A ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) )
101, 9sylan9eq 2337 . . . . 5  |-  ( ( A  e.  NN  /\  -.  E. p  e.  Prime  ( p ^ 2 ) 
||  A )  -> 
( mmu `  A
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )
1110fveq2d 5531 . . . 4  |-  ( ( A  e.  NN  /\  -.  E. p  e.  Prime  ( p ^ 2 ) 
||  A )  -> 
( abs `  (
mmu `  A )
)  =  ( abs `  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) ) )
12 neg1cn 9815 . . . . . . 7  |-  -u 1  e.  CC
13 prmdvdsfi 20347 . . . . . . . 8  |-  ( A  e.  NN  ->  { p  e.  Prime  |  p  ||  A }  e.  Fin )
14 hashcl 11352 . . . . . . . 8  |-  ( { p  e.  Prime  |  p 
||  A }  e.  Fin  ->  ( # `  {
p  e.  Prime  |  p 
||  A } )  e.  NN0 )
1513, 14syl 15 . . . . . . 7  |-  ( A  e.  NN  ->  ( # `
 { p  e. 
Prime  |  p  ||  A } )  e.  NN0 )
16 absexp 11791 . . . . . . 7  |-  ( (
-u 1  e.  CC  /\  ( # `  {
p  e.  Prime  |  p 
||  A } )  e.  NN0 )  -> 
( abs `  ( -u 1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )  =  ( ( abs `  -u 1
) ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )
1712, 15, 16sylancr 644 . . . . . 6  |-  ( A  e.  NN  ->  ( abs `  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  ( ( abs `  -u 1
) ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )
18 ax-1cn 8797 . . . . . . . . . 10  |-  1  e.  CC
1918absnegi 11885 . . . . . . . . 9  |-  ( abs `  -u 1 )  =  ( abs `  1
)
20 abs1 11784 . . . . . . . . 9  |-  ( abs `  1 )  =  1
2119, 20eqtri 2305 . . . . . . . 8  |-  ( abs `  -u 1 )  =  1
2221oveq1i 5870 . . . . . . 7  |-  ( ( abs `  -u 1
) ^ ( # `  { p  e.  Prime  |  p  ||  A }
) )  =  ( 1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) )
2315nn0zd 10117 . . . . . . . 8  |-  ( A  e.  NN  ->  ( # `
 { p  e. 
Prime  |  p  ||  A } )  e.  ZZ )
24 1exp 11133 . . . . . . . 8  |-  ( (
# `  { p  e.  Prime  |  p  ||  A } )  e.  ZZ  ->  ( 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) )  =  1 )
2523, 24syl 15 . . . . . . 7  |-  ( A  e.  NN  ->  (
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) )  =  1 )
2622, 25syl5eq 2329 . . . . . 6  |-  ( A  e.  NN  ->  (
( abs `  -u 1
) ^ ( # `  { p  e.  Prime  |  p  ||  A }
) )  =  1 )
2717, 26eqtrd 2317 . . . . 5  |-  ( A  e.  NN  ->  ( abs `  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  1 )
2827adantr 451 . . . 4  |-  ( ( A  e.  NN  /\  -.  E. p  e.  Prime  ( p ^ 2 ) 
||  A )  -> 
( abs `  ( -u 1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )  =  1 )
2911, 28eqtrd 2317 . . 3  |-  ( ( A  e.  NN  /\  -.  E. p  e.  Prime  ( p ^ 2 ) 
||  A )  -> 
( abs `  (
mmu `  A )
)  =  1 )
30 1le1 9398 . . 3  |-  1  <_  1
3129, 30syl6eqbr 4062 . 2  |-  ( ( A  e.  NN  /\  -.  E. p  e.  Prime  ( p ^ 2 ) 
||  A )  -> 
( abs `  (
mmu `  A )
)  <_  1 )
328, 31pm2.61dan 766 1  |-  ( A  e.  NN  ->  ( abs `  ( mmu `  A ) )  <_ 
1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   E.wrex 2546   {crab 2549   ifcif 3567   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   Fincfn 6865   CCcc 8737   0cc0 8739   1c1 8740    <_ cle 8870   -ucneg 9040   NNcn 9748   2c2 9797   NN0cn0 9967   ZZcz 10026   ^cexp 11106   #chash 11339   abscabs 11721    || cdivides 12533   Primecprime 12760   mmucmu 20334
This theorem is referenced by:  dchrmusum2  20645  dchrvmasumlem3  20650  mudivsum  20681  mulogsumlem  20682  mulog2sumlem2  20686  selberglem2  20697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-fz 10785  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-dvds 12534  df-prm 12761  df-mu 20340
  Copyright terms: Public domain W3C validator