MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mule1 Unicode version

Theorem mule1 20791
Description: The Möbius function takes on values in magnitude at most 
1. (Together with mucl 20784, this implies that it takes a value in  { -u 1 ,  0 ,  1 } for every natural number.) (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
mule1  |-  ( A  e.  NN  ->  ( abs `  ( mmu `  A ) )  <_ 
1 )

Proof of Theorem mule1
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 muval 20775 . . . . 5  |-  ( A  e.  NN  ->  (
mmu `  A )  =  if ( E. p  e.  Prime  ( p ^
2 )  ||  A ,  0 ,  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) ) )
2 iftrue 3681 . . . . 5  |-  ( E. p  e.  Prime  (
p ^ 2 ) 
||  A  ->  if ( E. p  e.  Prime  ( p ^ 2 ) 
||  A ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  0 )
31, 2sylan9eq 2432 . . . 4  |-  ( ( A  e.  NN  /\  E. p  e.  Prime  (
p ^ 2 ) 
||  A )  -> 
( mmu `  A
)  =  0 )
43fveq2d 5665 . . 3  |-  ( ( A  e.  NN  /\  E. p  e.  Prime  (
p ^ 2 ) 
||  A )  -> 
( abs `  (
mmu `  A )
)  =  ( abs `  0 ) )
5 abs0 12010 . . . 4  |-  ( abs `  0 )  =  0
6 0le1 9476 . . . 4  |-  0  <_  1
75, 6eqbrtri 4165 . . 3  |-  ( abs `  0 )  <_ 
1
84, 7syl6eqbr 4183 . 2  |-  ( ( A  e.  NN  /\  E. p  e.  Prime  (
p ^ 2 ) 
||  A )  -> 
( abs `  (
mmu `  A )
)  <_  1 )
9 iffalse 3682 . . . . . 6  |-  ( -. 
E. p  e.  Prime  ( p ^ 2 ) 
||  A  ->  if ( E. p  e.  Prime  ( p ^ 2 ) 
||  A ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) )
101, 9sylan9eq 2432 . . . . 5  |-  ( ( A  e.  NN  /\  -.  E. p  e.  Prime  ( p ^ 2 ) 
||  A )  -> 
( mmu `  A
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )
1110fveq2d 5665 . . . 4  |-  ( ( A  e.  NN  /\  -.  E. p  e.  Prime  ( p ^ 2 ) 
||  A )  -> 
( abs `  (
mmu `  A )
)  =  ( abs `  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) ) )
12 neg1cn 9992 . . . . . . 7  |-  -u 1  e.  CC
13 prmdvdsfi 20750 . . . . . . . 8  |-  ( A  e.  NN  ->  { p  e.  Prime  |  p  ||  A }  e.  Fin )
14 hashcl 11559 . . . . . . . 8  |-  ( { p  e.  Prime  |  p 
||  A }  e.  Fin  ->  ( # `  {
p  e.  Prime  |  p 
||  A } )  e.  NN0 )
1513, 14syl 16 . . . . . . 7  |-  ( A  e.  NN  ->  ( # `
 { p  e. 
Prime  |  p  ||  A } )  e.  NN0 )
16 absexp 12029 . . . . . . 7  |-  ( (
-u 1  e.  CC  /\  ( # `  {
p  e.  Prime  |  p 
||  A } )  e.  NN0 )  -> 
( abs `  ( -u 1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )  =  ( ( abs `  -u 1
) ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )
1712, 15, 16sylancr 645 . . . . . 6  |-  ( A  e.  NN  ->  ( abs `  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  ( ( abs `  -u 1
) ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )
18 ax-1cn 8974 . . . . . . . . . 10  |-  1  e.  CC
1918absnegi 12123 . . . . . . . . 9  |-  ( abs `  -u 1 )  =  ( abs `  1
)
20 abs1 12022 . . . . . . . . 9  |-  ( abs `  1 )  =  1
2119, 20eqtri 2400 . . . . . . . 8  |-  ( abs `  -u 1 )  =  1
2221oveq1i 6023 . . . . . . 7  |-  ( ( abs `  -u 1
) ^ ( # `  { p  e.  Prime  |  p  ||  A }
) )  =  ( 1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) )
2315nn0zd 10298 . . . . . . . 8  |-  ( A  e.  NN  ->  ( # `
 { p  e. 
Prime  |  p  ||  A } )  e.  ZZ )
24 1exp 11329 . . . . . . . 8  |-  ( (
# `  { p  e.  Prime  |  p  ||  A } )  e.  ZZ  ->  ( 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) )  =  1 )
2523, 24syl 16 . . . . . . 7  |-  ( A  e.  NN  ->  (
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) )  =  1 )
2622, 25syl5eq 2424 . . . . . 6  |-  ( A  e.  NN  ->  (
( abs `  -u 1
) ^ ( # `  { p  e.  Prime  |  p  ||  A }
) )  =  1 )
2717, 26eqtrd 2412 . . . . 5  |-  ( A  e.  NN  ->  ( abs `  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) ) )  =  1 )
2827adantr 452 . . . 4  |-  ( ( A  e.  NN  /\  -.  E. p  e.  Prime  ( p ^ 2 ) 
||  A )  -> 
( abs `  ( -u 1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )  =  1 )
2911, 28eqtrd 2412 . . 3  |-  ( ( A  e.  NN  /\  -.  E. p  e.  Prime  ( p ^ 2 ) 
||  A )  -> 
( abs `  (
mmu `  A )
)  =  1 )
30 1le1 9575 . . 3  |-  1  <_  1
3129, 30syl6eqbr 4183 . 2  |-  ( ( A  e.  NN  /\  -.  E. p  e.  Prime  ( p ^ 2 ) 
||  A )  -> 
( abs `  (
mmu `  A )
)  <_  1 )
328, 31pm2.61dan 767 1  |-  ( A  e.  NN  ->  ( abs `  ( mmu `  A ) )  <_ 
1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2643   {crab 2646   ifcif 3675   class class class wbr 4146   ` cfv 5387  (class class class)co 6013   Fincfn 7038   CCcc 8914   0cc0 8916   1c1 8917    <_ cle 9047   -ucneg 9217   NNcn 9925   2c2 9974   NN0cn0 10146   ZZcz 10207   ^cexp 11302   #chash 11538   abscabs 11959    || cdivides 12772   Primecprime 12999   mmucmu 20737
This theorem is referenced by:  dchrmusum2  21048  dchrvmasumlem3  21053  mudivsum  21084  mulogsumlem  21085  mulog2sumlem2  21089  selberglem2  21100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-sup 7374  df-card 7752  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-rp 10538  df-fz 10969  df-seq 11244  df-exp 11303  df-hash 11539  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-dvds 12773  df-prm 13000  df-mu 20743
  Copyright terms: Public domain W3C validator